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Heat stress has severe effects in organisms. Dairy cattle is susceptible to suffer behavioral, physiological 
and reproductive damages due heat stress. Breeding searching for tolerant heat stress genes and their 
incorporation in crossbreeding programs has gained interest in dairy cattlemen concerned by the global 
warming and greenhouse effect in the environment. This review shows and update of the crossbreeding in 
dairy cattle in both hemispheres. Here, is reviewed the effect of heat stress on dairy cattle; the mechanism 
of autoregulation; the benefits of the heterosis in crossbreeding cattle by hybridization; the body condition 
score in crossbred dairy cattle; the yields in crossbreds; here is also discussed that even when there 
have been many crossbreeding in dairy cattle, but when the producer choose a system crossbreeding in 
dairy cows always mostly contemplate only body weight, body condition score, dry matter intake, and 
feed efficiency. Is suggested to contemplate other traits like genetic potential, lactation (305 d), lactation 
number, fertility rate, and economic impact to observe clarity the potential of each crossbred in dairy 
cattle in the future.

INTRODUCTION 

For many years, the superiority for milk yield in 
Holstein breed cows has limited the use of other breeds 

or crossbreeding in dairy farms worldwide. In the USA, 
fewer than 7% of dairy herds are other than purebred 
or grade Holsteins (McAllister, 2002; Nehring et al., 
2017). However, over the past few years dairy producers 
have shown more interest in crossbreeding programs for 
dairy cattle, especially in warm climate regions. Through 
classical genetic improvement tools a heat tolerant gene can 
be introduced into a less heat tolerant breed helping cattle 
to better adapt to warmer environmental temperatures.

Holstein cows have outstanding production when 
environment temperatures ranges between 5 and 25oC and 
temperature-humidity index (THI) does not exceed 72 units 
which is considered the thermal comfort zone for dairy 
cows (McDowell, 1972; Akyuz et al., 2010). However, 
in areas subjected to warm climates Holstein cows do not 
fully express their potential for milk yield and have their 
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reproductive proficiency compromised (Dikmen et al., 
2009; West, 2003; De Rensis and Scaramuzzi, 2003). 
Cows that calve during winter months produce more milk 
in 305-day lactations than cows calving during hot summer 
months (McDaniel et al., 1967). In a study in Israel 
during summer Holstein cows decrease milk yield, 8 % 
and conception rate 70 % regarding winter (Flamenbaum 
and Galon, 2010). In agree, Folman et al. (1979) found 
only about an 8% decline in milk yield for summer 
conditions when the mean afternoon temperature was 39.8 
°C compared with winter conditions. Studies carried in 
climatic chambers, described a decrease in milk yield of 
14% in early lactating dairy cows (Lacetera et al., 1996) 
kept under heat stress conditions. Under Mediterranean 
climatic conditions, summer calvers produce less milk 
per lactation than winter calvers (Barash et al., 1996). In 
Po Valley, northern Italy, Speroni et al. (2006) found 16% 
less milk yield after the start of the hot period regarding 
before the star of the hot period in multiparous dairy cows 
under milking parlor system. Following, diverse authors 
have shown their preoccupation respect to heat stress 
topic on milk yield in different parts of the world such 
as Missouri, Arizona, U.S., Israel, México, etc. (Igono 
et al., 1987, 1992; Her et al., 1988; Flamenbaum et al., 
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1995; Correa et al., 2002; Avendaño et al., 2006, 2010; 
Adin et al., 2009). Also, St-Pierre et al. (2003) reported 
that heat stress greatly affected economic loss by the US 
dairy industry and that estimated losses ranged from $897 
to $1,500 million, annually. Several strategies have been 
suggested to minimize the negative effect of heat stress in 
dairy cows, including facilities design, cooling systems, 
feeding and breeding strategies and genetic management 
(Armstrong, 1994; West, 1999; Berma, 2008).

A recent report evaluating the breed composition of 
the US dairy cattle identified an increased percentage of 
crossbred dairy herds in US from 0.4 % for cows born in 
1990 to 0.7 % in 2000 and 1.6% in 2005 (Powell et al., 
2008). More recently, it has been estimated the US dairy 
cattle population of 9.2 million of dairy cows (USDA, 
2009) in which 3.3% correspond to the crossbred and 
90.1% to Holstein cows. These crossbred cows in the US 
are responsible for 2.7 million kg of milk and 102,000 kg 
of milk fat. In New Zealand, the proportion of crossbred 
dairy cows is higher than in the US. In the New Zealand 
2006/2007 season dairy cow population accounted 
with 3.92 million of dairy cows (LIC, 2007) in which 
crossbred represented 31.6% mainly formed by Jersey x 
Holstein cross. These crossbred cows were responsible 
for 15.1 billion Kg of milk and 750 million Kg of milk 
fat and 566 million Kg of milk protein during that season. 
Differently than US and New Zealand, other places in 
Africa and Asia uses Bos taurus x Bos indicus crossbreds 
for dairy propose. In Thailand, more than 95% of the dairy 
herd is crossbred using Holstein and Sahiwal or Thai 
native breeds (Boonkum et al., 2011). The benefit of this 
crossbreeding strategy is the introduction of heat tolerant 
and diseases resistant gen from Sahiwal or Thai native into 
a less heat tolerant and less disease resistant breed such as 
Holstein (Reodecha et al., 2002; Chanvijit et al., 2005). 
The advantage of these crossbreeding strategies is due the 
hybrid vigor (heterosis) observed on the hybrid offspring 
(Hill et al., 1983; Lopez-Villalobos et al., 2000). 

Therefore, the objective of this review is to describe 
the main effects of the environmental heat stress on 
productive and physiological responses crossbred dairy 
cows.

EFFECT OF HEAT STRESS ON DAIRY 
CATTLE

Heat stress is a term that describes the increase of 
several environment conditions such as: humidity, air 
temperature, radiation, and air movement (Jordan, 2003). 
Thus, the heat stress appears when any combination of 
these environmental conditions causes discomfort in the 

animal due to inefficiency heat loss, this produces negative 
effects on the productive and reproductive efficiency 
of the dairy cattle (Armstrong, 1994; McManus et al., 
2011). Heat stress compromises oocyte growth in cows 
by altering progesterone, the secretion of luteinizing 
hormone and follicle-stimulating hormone and dynamics 
during the oestrus cycle (Ronchi et al., 2001; Hernández 
et al., 2011). Also, a drop can occur in summer of about 
a 20–27% in conception rates (Chebel et al., 2004; Lucy, 
2002; Calderón et al., 2012) or a decrease in 90-day non-
return rate to the first service in lactating dairy cows (Al-
Katanani et al., 1999; Das et al., 2016; Ali et al., 2018). 

On the other hand, Johnson (1976) attributed that the 
milk yield variation was due to climatic factors is among 
3-10%. In addition, dairy cows in lactation produce greater 
amount of metabolic heat, this combined with the heat 
generated by atmosphere result in the increase and gain 
from heat corporal (Fuquay, 1981; Krishnan et al., 2017). 
The heat increment for feeding in cattle is high (35-70% 
of metabolisable energy), depending on the balance of 
nutrients. Heat increment is non-useful energy and, during 
heat stress, must be dissipated (Polsky and von Keyserlingk, 
2017; Grandl et al., 2018). As environmental temperature 
increases, animals require extra energy to dissipate the 
heat load (Al-Dawood, 2017). Reduction of fiber intake, 
particularly with a minimum fall in metabolizable energy, 
may lower the heat increment sufficiently to act as a partial 
protection against forecast high heat stress (Fuquay, 1981; 
Al-Dawood, 2017). As the result, the higher threshold in the 
Thai crossbred population might due to the combinations 
of heat-tolerance genes from Bos indicus and the lower 
production. Generally, Thai cattle are rarely fed to their 
genetic potential because of the low quality of tropical 
roughages (Boonkum et al., 2011). The best recognized 
effect of heat stress is an adaptive depression of metabolic 
rate associated with reduced appetite (Silanikove, 2000). 
Heat stress causes the rostral cooling center of the 
hypothalamus to stimulate the medial satiety center which 
inhibits the lateral appetite center and consequently lowers 
milk yield (Kadzere et al., 2002). The arterial plasma 
volatile fatty acids they are in the form of acetate. Animals 
under heat stress conditions the plasma acetate percent is 
high (69% to 77%) this would be explainable in the light of 
the high energy and substrate demands for milk synthesis, 
because acetate is the major energy source of normal fed 
ruminants (Chaiyabutr et al., 2008). In addition, acetate 
is involved in mammary gland metabolism in either de 
novo synthesis of short and medium-chain milk fatty 
acids or generation of ATP and NADPH. On the other 
hand, the high values of concentrations of arterial plasma 
β-hydroxybutyrate on animals under heat stress would 
be consistent with an increase in oxidation of free fatty 
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acids (Bauman et al., 1988; Al-Dawood, 2017). A greater 
energy requirement due to panting of animals during heat 
stress, resulting in increased hepatic ketogenesis due to 
greater mobilization of fat reserves, might be apparent 
under high temperatures (Collier et al., 2017a). A simple 
approach to quantify heat stress is the THI which is 
estimated by combining environmental temperature and 
relative humidity (i.e. THI = [0.81 x average temperature] 
+ relative humidity [average temperature – 14.4] + 46.4; 
Hahn, 1999). Using this index, heat stress in dairy cattle 
starts at 72 units (Armstrong, 1994). Environmental 
effects on milk yield are difficult to determine due to can 
be affected by other factors such as management nutrition 
which can or not be ligature to factors related to the 
environment (Fuquay, 1981). However, currently studies 
on environmental impacts of milk were assessment (De 
Vries and de Boer, 2010). In a study, cows were fed diets of 
16%, 17.9%, 19.4% and 21.2% acid detergent fiber during 
warm (THI between 64 and 77) and hot weather conditions 
(THI between 72 and 84) (Table I). However, Thatcher et 
al. (1994) has divulged fat and milk yield less like result 
by high temperatures. Heat stress has effect negatives on 
the secretory function of the udder (Silanikove, 1992). 
In addition, when dairy cows be are on THI by 83, the 
milk yield can fall 53%, and total energy output fall 
48% (Anzures-Olvera et al., 2015). Also, percentage 
of fat, protein and lactose in milk decrease 19, 13, and 
9%, respectively (Joksimović-Todorović et al., 2011). In 
order to improve the milk yield it is major lower levels 
of hyperthermia by environmental manipulation. Several 
studies have shown different cooling strategies to decrease 

heat stress effects on milk yield in dairy cattle (Table II). 
Autoregulation mechanism on environmental

Physiological variables on crossbred dairy cattle are 
shown in Table III. Heat flow occurs through processes 
dependent on surrounding temperature (sensible heat loss; 
i.e. conduction, convection, radiation) and humidity (latent 
heat loss; evaporation through sweating and panting) 
(Hansen, 2004; Allen et al., 2015; Chand et al., 2017). 
The rectal temperature (RT) and respiration rate (RR) are 
excellent indicators to predict the heat stress presence in 
the dairy cattle (Collier et al., 2017b). Fabris et al. (2017) 
reported that cows increase RT and RR from 77 units of 
THI. Under heat stress condition the RR can increase 64% 
more than normal (20 breath/min) in thermoneutral zone 
(Arias et al., 2018). Berman et al. (1985) found that the 
respiratory frequency started rising above 50–60 breaths /
min at ambient temperatures higher than 25 °C).

Table I.- Effect of heat stress on milk yield (kg day-

1) and % milk fat of cows fed diets differing in acid 
detergent fiber (ADF) concentrations.

Milk yield (kg day-1) Milk fat (%)
% ADF of 

diet
Warm 
temp.a,c

Hot 
temp.b,d

Warm 
temp.a

Hot 
temp.b,c

16.00 32.30 24.60 3.24 3.21
17.90 32.60 25.80 3.49 3.28
19.40 31.40 26.40 3.58 3.50
21.20 28.90 22.70 3.62 3,69

a, Minimum and maximum THI was 64 and 77, respectively; b, Minimum 
and maximum THI was 72 and 84, respectively; c, Linear effect; d, 
Quadratic effect. Source, West et al. (1999).

Table II.- Strategies of cooling and THI on the milk yield of dairy cattle during summer.

Location Treatment and milk yield (kg/d) THI 
(Max)

Cooling time 
(h/d)

Reference
NC C

Missouri, USA 23.00 25.00* 76.00 24.00¤ Igono et al. (1987)
Israel 32.10 35.00* 87.60 4.50 Her et al. (1988)
Arizona, USA 23.00 32.00* 79.00 11.00 Igono et al. (1992)
Beit-Dagan, Israel 34.00 35.00 78.00 11.00¥ Flamenbaum et al. (1995)
Mexicali, Mex 27.00 31.00* 89.00 8.00 Correa et al. (2002)
Mexicali, Mex 20.20 22.20* 79.00 3.00 Avendaño et al. (2006)
Mexicali, Mex 19.101 21.12* 91.30 3.00 Avendaño et al. (2010)
Mexicali, Mex 17.43 18.70* 83 4 Avendaño et al. (2012)
Mexicali, Mex 16.16 16.12 83 4 Hernández et al. (2011)
Moshav Timmorim, Israel 39.30 41.40* 77.40 4.00 Adin et al., 2009
Kingdom, Saudi Arabia 52.28≠ 52.20∞ 80 13-14 Ortiz et al. (2015)
Pirassununga, SP, Brazil 18 22 78 24 Titto et al. (2013)
Buckeye, Arizona 29.6 31.3 80 2.25 Anderson et al. (2013)

*P<0.05; NC, Control; C, Cooling; THI, temperature-humidity index.1Cooling by one hour, cooling system ignited if the environmental were greater to 
>27ºC; ¥, Cooling system ignited each 2 h during 30 min. ≠, Korral Kool system (Korral Kool Inc., Mesa, AZ); ∞, FlipFan system (Schafer Ventilation 
Equipment LLC, Sauk Rapids, MN).
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Table III.- Physiological variables on crossbred dairy cattle differences.

Crossbred group Rectal temperature 
(°C)

Respiration rate 
(breaths/min)

Body condition 
score

Reference

Jersey x Holstein -
-

-
-

2.90 ± 0.03a

2.76 ± 0.04b
Heins et al. (2008a)

Holstein
Jersey x Holstein -

-
-
-

2.80 ± 0.03a Heins et al. (2008b)
Holstein 2.71 ± 0.03b

Brahman x Holstein 39.86 ± 0.48 85.16 ± 1.37 - Khongdee et al. (2010)
Thai x Holstein 41.21 ± 0.28 86.87 ± 0.12 - Khongdee et al. (2006)
Jersey x Holstein - - 4.62 ± 0.01a

4.54 ± 0.01b
Auldist et al. (2007)

Holstein
Red Shindi x Holstein 39.37 ± 0.7 73 ± 15.67 - Chaiyabutr et al. (2008)
Cambodian native zebu × 
Holstein-Friesian

40.0 ± 1.0 - - Bun et al. (2018)

Zebu x Holstein 38.6 ± 0.75 55 ± 2.52 - De Paula Xavier de Andrade et al. (2017)
Gyr x Holstein ≥ 39.3 ≥ 36 3.5 Da Costa et al. (2015)
Gyr x Holstein - 65 ± 5 - Santos et al. (2017)

Means with different superscripts within a row are significantly different (P < 0.05).

On the other hand, it has been observed that RR can 
decrease after providing cold water (Golher et al., 
2015). The RT increase 0.7% more than normal (38.5 
°C) (Igono et al., 1992). It has been demonstrated that 
under heat stress conditions RT increases, then decreases 
the consumption of dry matter, cud process and food 
passage rate (Kamal et al., 2016a, b). Consequently, milk 
production decreases, mainly in cows that have been 
exposed to high temperatures for at least 67 days (Ammer 
et al., 2018). It appears that there are notable differences 
between breeds in their abilities to regulate RT: the mean 
rectal temperature is higher in Bos taurus than in Bos 
indicus cattle (Hansen, 2004) and, as a result, B. taurus 
cattle are more sensitive to heat stress than their Bos 
indicus counterparts (Hansen, 2007). An increase in the 
panting and sweating by dairy cows would be the normal 
mechanism by which animals dissipate heat load from 
their body to maintain thermoregulation in hot ambient 
conditions (Polsky and von Keyserlingk, 2017). In fact, 
during heat stress, evaporative heat loss via respiration 
rate can be greater for European breeds respect Bos indicus 
(Gaughan et al., 1999). Kibler and Brody (1950) showed 
that Jersey cows had much higher respiration rates than 
Holsteins, which they attributed to the Jersey cows better 
ability to dissipate heat compared to Holsteins. Then it is 
not to be surprised that Jersey x Holstein cows had lower 
vaginal temperatures during much of the day than Holstein 
or Jerseys suggests that thermotolerance is another trait 
controlled by heterosis (Dikmen et al., 2009). The hair 
coats of cattle of different breeds vary from fine and glossy 
to thick and woolly, and present a range of insulation 
values; this will affect heat exchange by convection and 

evaporation of sweat. Since year 50’s we know that zebus 
had a higher sweating rate than European breeds (Kibler 
and Brody, 1952). It was not until ends 50’s and beginning 
60’s when discovering that gland numbers in zebus is 
greater than British breeds (Ferguson and Dowling, 1955; 
Allen et al., 1962). In fact, studies have now been made to 
confirm that the rate of sweating is higher in Bos indicus 
(Gaughan et al., 1999). Blazquez et al. (1994) reported that 
increased blood flow to the skin is positively correlated 
to the sweating rate. Likewise, the direct relationship 
between the rate of skin sweating and the coat surface 
temperature (Silva and Maia, 2011). Jersey heifers showed 
a linear increase in sweating rate with increasing air and 
skin temperature, whereas the sweating rate of zebu heifers 
did not rise until skin temperature reached 35 °C and air 
temperature 30°C (Allen, 1962). In fact, sweating rate 
was greater for zebu cattle than european cattle (Hansen, 
2004). Respiratory rate was also greater in the Jersey, 
indicating more reliance on respiratory evaporation. 
Sharma et al. (1983) showed that, within Bos taurus dairy 
cattle breeds, the Jersey was less sensitive to thermal stress 
than the Holstein-Friesian. Among heat-adapted cattle, the 
sweating rates of Bos indicus increase exponentially with 
rises in body temperature, but in Bos taurus, sweating rates 
tend to plateau after an initial increase (Finch et al., 1982). 
Schmidt-Nielsen (1964) reported that as the environmental 
temperature rose, Bos taurus cattle showed an appreciable 
increase in evaporation between 15 and 20 °C, with a 
maximum rate of evaporation being reached before 30 
°C. On the contrary, Brahman cows (Bos indicus) had 
initially lower evaporation rates, but rapid evaporation 
rates occurred when temperatures were between 25 and 30 
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°C, and continued rising up to 40 °C. Cattle in temperate 
and tropical regions possess the same type of sweat glands, 
one to each hair follicle (Findlay and Yang, 1950). Cattle 
with shorter hair, hair of greater diameter and lighter coat 
color are more adapted to hot environments than those 
with longer hair coats and darker colors (Bernabucci et al., 
2010). However, tropical breeds have a higher density of 
hair follicles (1698/ cm² for Zebu) than is the case in Bos 
taurus breeds (1064/ cm² for Shorthorn) (Dowling, 1955; 
McManus et al., 2014). The metabolic rate is greater in 
Bos taurus than Bos indicus cattle even 80-85% (Vercoe, 
1970). Finch (1985) showed that under high heat stress, 
resistance to heat transfer in Brahman cattle continued 
to fall as the skin temperature approached the body core 
temperature, whereas in Shorthorn cattle there was an 
abrupt increase in resistance as the temperature differential 
reached 2 °C. As a consequence, heat storage rose rapidly 
in the Shorthorn.

HETEROSIS IN DAIRY CATTLE

Heterosis is the added increase in performance 
when animals are crossbred, and usually defined as the 
superiority of a first cross (F1) over and above the mean 
of the two parental strains (Syrstad, 1985; Kelleher et al., 
2017). Also, heterosis can be estimated indirectly from 
many different combinations of crosses, e.g. by comparing 
pure bred with F1 or F1 with F2. In a study, McDowell 
(1982) showed different types of dairy performance 
traits to determine whether hybridization would produce 
cattle of improved adaptability and production (Table 
IV). Over the past few years dairy producers have shown 
more interest in crossbreeding programs for dairy cattle 
especially in warm climate regions. Often Canadian and 
United States dairy producers have a well standpoint about 
crossbred importance on this topic; they can have estimated 
sire genetic merit on a regional and national basis until 
1995 because of the expectation that genotype x region 
interactions may be important to know what crossbred to 
choose and to use advisable in his dairy farm (Boettcher et 
al., 2003; Norman et al., 2005). Through classical genetic 
improvement tools a heat tolerant gene can be introduced 
into a less heat tolerant breed helping cattle to better adapt 
to warmer environmental temperatures. Crossbreeding 
programs are available for dairy cattle and it has been used 
as one of these strategies to improve resistance to thermal 
stress. The first publications on the performance of Bos 
taurus x Bos indicus crossbred cattle appeared more than 
50 years ago (Syrstad, 1985). Diverse researches have been 
reported performance of crossbred dairy cows exposed to 
heat stress (Heins et al., 2006, 2008a, b; Khongdee et al., 
2010; Boonkum et al., 2011). It is known that conventional 
crossbreeding between breeds of Bos taurus cattle and Bos 

taurus with Bos indicus cattle (F1) has been a strategy to 
improve resistance to thermal stress; but always lowers 
milk yields in the F1 generation compared to the Bos 
taurus purebred dairy cow. In agreement, Bohmanova et 
al. (2005) found bulls that transmit a high tolerance to heat 
stress have daughters with higher pregnancy rates and a 
longer productive life; but lower milk yields. In addition, 
although these results are the answer to choose any milk 
crossbred, this crossbred topic could be but complicated 
that it seems, something difficult to explain. Because in 
practical terms several studies show different results on 
crossbred dairy cattle, whereas others factor like location, 
clime and year are variables very important to consider 
(Table V).

Table IV.- Range in heterosis values for different types 
of dairy performance traits.

Trait Heterosis (%)
Yields 5.0–6.6
Viability (livability) 3.7–4.6
Growth 3.2–5.7
Reproduction 0.8–5.0

Source, McDowell, (1982).

BODY CONDITION SCORE IN CROSSBRED

Studies indicate that the body condition score (BCS) 
is greater or equal between Jersey and Holstein purebred 
cows (Washburn et al., 2002; Rastani et al., 2001). For 
this reason other studies have shown that BCS is highly 
difference between Holstein and Jersey x Holstein having 
advantage crossbred on purebred cows (Heins et al., 
2008a, b; Auldist et al., 2007). This difference is related 
with nutrition of low quality, e.g. when the pasturing like 
only source of nutrition is provided. It is very important 
provide energy supplementation in these cases. If not, 
consecutively they would have BCS relatively low. Also, is 
true that during the first days of lactation both Holstein and 
Jersey x Holstein cows decreased their BCS due to in this 
time they mobilize body fat to cover the energy demand 
that the metabolism high produce during the production 
(Britt et al., 2003). However, the Jersey x Holstein have 
recovery during this critical time than Holstein cows. On 
the other hand, some authors have observed changes to 
increase the BCS even 3.5 the first 4 week of lactation in 
crossbred Karan Fries (Aggarwal et al., 2013). Therefore, 
it seems that the crossbred animals are more efficient in 
recovering their BCS. Transition cows with high BCS 
lose more body weight and body condition than thinner 
cows (Aggarwal et al., 2008). In other study, BCS before 
and after calving were different between Holstein and 
Norwegian x Holstein cows (Rinell and Heringstad, 
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2018). Finally, dairy cows under heat stress conditions, 
decrease appetite and nutrient availability, causing low 
weight, negative energy balance and reduction in BCS 
(Rhoads et al., 2009, 2011). In fact, it has been observed 
that ewes with low condition, have more difficulty to eat 
than animals with high condition (Verbeek et al., 2012).

YIELD IN CROSSBREDS

Usually, the responses between crossbreds and 
environments different on fat (%), protein (%), and 
milk yield are very variables such as it indicated Table 
VI. Like is known the milk yield in Holstein dairy cows 
is very greater than others crossbred or purebred cows 
(Touchberry, 1992; McAllister et al., 1994). Heins et al. 

(2006) reported statistical differences between fat and 
protein yield when evaluating crossbreds different, where 
Holstein cows (Fat=346, Protein=305 kg) producing 
greater amount (P<0.05) of fat and protein than Normande 
x Holstein (Fat=319, Protein=277 kg), and Montbeliarde 
x Holstein (Fat=334, Protein=293 kg) cows. However, 
producing significantly the same amount (P>0.05) than 
Scandinavian Red x Holstein (Fat=340, Protein=297 kg) 
due to milk produced amount. Heins et al. (2008b) found 
significantly different (P<0.05), and reported 223 and 238 
kg protein yield, respectively to Jersey x Holstein and 
Holstein. Studies have shown that Jersey x Holstein cows 
tended (P<0.10) to less milk yield than Holstein cows, but 
in the end both breed cows have the same (P>0.05) milk 
yield (Heins et al., 2008a). The standpoint it is well, so at

Table V.- Sources of study.

Reference Average 
THI, TZ and BGT

Location Crossbred and percent 

Heins et al. (2006) Both California, USA Nomande (50) x Holstein (50)
Montbeliarde (50) x Holstein (50)
Scandinavian Red (50) x Holstein (50)

Heins et al. (2008a) TZ Minnesota, USA Jersey (50) x Holstein (50)
Heins et al. (2008b) TZ Minnesota, USA Jersey (50) x Holstein (50)
Khongdee et al. (2010) THI= 80.13 ± 0.45 Sakol Nakhon, Thailand Brahaman (12.5) x Holstein (87.5)
Khongdee et al. (2006) THI=>72 Sakol Nakhon, Thailand Thai (12.5) x Holstein (87.5)
Boonkum et al. (2011) THI=73 all year

THI=80 April to July
Pathumthani and other 

provinces, Thailand
Thai (6.4-12.5) x Holstein (87.5-93.6)

Auldist et al. (2007) TZ Gippsland, Australia Jersey (25,50,75) x Holstein (25,50 y 75)
Dikmen et al. (2009) THI=>72 Florida, USA Jersey (50) x Holstein (50)
Chaiyabutr et al. (2008) THI=81 ± 2.9 Thailand Red Shindi (87.5) x Holstein (12.5)
Barbosa et al. (2008) THI=>72 Pernambuco, Brazil Gir x Holstein (25, 50, 62.5, 62.5-inter se)
Bun et al. (2018) THI=>80 Phnom Penh, Cambodia Cambodian native zebu (50) × 

Holstein-Friesian (50)
Kamila et al. (2018) TZ Worgule, Poland Normande (50) x Holstein (50)

Norwegian Red (50) x Holstein (50)
Danish Red (50) x Holstein (50)
Brown Swiss (50) x Holstein (50)
Montbeliarde cattle (50) x Holstein (50)
Simmental(50) x Holstein (50)

De Paula Xavier de Andrade et al. 
(2017)

THI=maximum 80 Pernambuco, Brazil Zebu (25) x Holstein (75)
Zebu (12.5) x Holstein (87.5)

El-Tarabany and El-Tarabany 
(2015)

THI=máximum 90 Cairo, Egypt Brown Swiss (50) x Holstein (50)

Da Costa et al. (2015) THI=>80 Ceará, Brazil Gyr (75) x Holstein (25)
Gyr (50) x Holstein (50)

Santos et al. (2017) BGT=>80 Paraiba, Brazil Gyr (12.5) x Holstein (87.5)

THI, temperature-humidity index; TZ, thermoneutral zone; BGT, black globe temperature.
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Table VI.- Productive variables on crossbred dairy cattle differences.

Crossbred group n Milk lactation 
number and 

DIM

Milk yield (kg) Fat (%) Protein (%) Reference

Nomande x H 245 1, 40 27.96 ± 1.66b 3.74 ± 0.08 3.24 ± 0.05 Heins et al. (2006)
Montbeliarde x H 494 30.03 ± 1.66b 3.64 ± 0.08 3.20 ± 0.05
Scandinavian Red x H 328 30.42 ± 1.66b 3.66 ± 0.08 3.20 ± 0.05
Holstein 380 31.99 ± 1.66a 3.55 ± 0.08 3.13 ± 0.05
Jersey x Holstein 24 1, 4-150 29.25 ± 1.21* 3.83 ± 0.17 3.12 ± 0.09 Heins et al. (2008a)
Holstein 17 30.96 ± 1.21* 3.59 ± 0.17 3.08 ± 0.09
Jersey x Holstein 76 1, 305 23.43 ± 1.29a 2.74 ± 0.03 2.23 ± 0.03 Heins et al. (2008b)
Holstein 73 25.26 ± 1.29b 2.77 ± 0.03 2.38 ± 0.03
Jersey x Holstein (kg/d) 378 - 26.90 ± 2.46a 4.04 ± 0.24a 3.40 ± 0.10a Auldist et al. (2007)
Holstein (kg/d) - 29.10 ± 2.46b 3.70 ± 0.24b 3.26 ± 0.10b

Jersey x Holstein (kg/d) 1200 1-2, 150 15.80 ± 1.2c - - Dikmen et al. (2009)
Jersey (kg/d) 16.30 ± 1.1b - -
Holstein (kg/d) 19.40 ± 1.0a - -
Brahman x Holstein (day-1) 8 2 and 3,60-70 8.38 ± 0.87 3.25 ± 0.41 3.10 ± 0.28 Khongdee et al. (2010)
Thai x Holstein (head-1 day-1) 7 2 and 3, 60-70 8.28 ± 0.12 - - Khongdee et al. (2006)
Thai x Holstein (test-day milk yield) - 3, 64-230 13.8 ± 5.4 - - Boonkum et al. (2011)
Red Shindi x Holstein(early lactation) 18 1, 68 ± 5 12.6 ± 2.5 4.04 ± 2.08 3.32 ± 0.18 Chaiyabutr et al. (2008)
Red Shindi x Holstein (mid-lactation) 1, 125 ± 11 11.8 ± 3.2 3.38 ± 0.70 3.19 ± 0.24
Red Shindi x Holstein (late lactation) 1, 210 ± 10 7.9 ± 3.1 4.00 ± 0.77 3.45 ± 0.19
Gir x Holstein (25%) 1212 - 5.34 ± 0.46 4.08 ± 0.12 - Barbosa et al. (2008)
Gir x Holstein (50%) - 8.61 ± 1.16 4.45 ± 0.29 -
Gir x Holstein (62.5%) - 7.42 ± 0.39 3.87 ± 0.10 -
Gir x inter se (62.5%)ǂ - 5.76 ± 0.46 3.89 ± 0.12 -
Normande x Holstein 10 2, 150 ± 21 18.93 ± 4.40* 3.59 ± 0.58* 4.77 ± 0.16* Kamila et al. (2018)
Norwegian Red x Holstein 10 25.44 ± 7.71* 3.40 ± 0.15* 3.91 ± 0.63*

Danish Red x Holstein 10 20.70 ± 6.51* 3.19 ± 0.28* 4.21 ± 0.80*

Brown Swiss x Holstein 10 23.13 ± 5.00* 3.23 ± 0.27* 4.79 ± 0.68*

Montbeliarde cattle x Holstein 10 28.00 ± 3.94* 3.02 ± 0.24* 3.61 ± 0.63*

Simmental x Holstein 10 23.63 ± 4.51* 3.22 ± 0.32* 3.91 ± 1.55*

Zebu x Holstein 8 -, 80 20 - - De Paula Xavier de 
Andrade et al. (2017)

Gyr (50) x Holstein (50) 60 1, 20-30 3937 ± 87a& - - Da Costa et al. (2015)
Gyr (75) x Holstein (25) 60 4262 ± 116b&

Means with different superscripts within a row are significantly different (P < 0.05). Means with same signal within a row have showed tend (P < 0.10). 
ǂinter se, Holstein x Zebu; &, from September to November.

the end of the day Holstein cows produce greater fat and 
protein yield, due to produce greater milk yield. Auldist 
et al. (2007) found that Jersey x Holstein cows (26.90 
kg) had significantly (P<0.05) less milk that Holstein 
(29.10 kg), but breed groups did not differ for fat or 
protein percent. It is very common not reported statistic 
differences in fat and protein percent (Heins et al., 2006, 
2008a, b) between crossbred and Holstein cows. In agree 
a study proves that Holsteins had on average 5% higher 
fat and protein yields in parities 1 to 3 but Norwegian 
Red x Holstein had higher fat and protein percentages 

(Ezra et al., 2016). Also, other authors agree with these 
same results (Heins et al., 2008b; Bryant et al., 2007; 
Madgwick and Goddard, 1989; Lesmeister et al., 2000). 
Higher concentrations of fat and protein in milk from 
Jersey x Holstein cows compared with Holstein cows 
resulted similar daily yields of fat and protein between 
breed groups. This is significant to Victorian herd owners, 
who are paid for milk based on the quantities of fat and 
protein supplied, with a penalty for milk volume. Dikmen 
et al. (2009) reported significantly differences (P<0.05) 
in milk yield, and not is amazing that Holstein (19.4 kg) 
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cows produce more milk than Jersey x Holstein (15.8 kg), 
and Jersey (16.3 kg) cows. However, these authors explain 
that differences in milk yield between genotypes were 
small, probably because the level of nutrition did not allow 
Holsteins to realize their genetic potential for milk yield. 
Perhaps genotype differences in thermoregulatory ability 
would be greater than seen here if there were greater 
differences in milk yield between genotypes. Heterosis 
has been demonstrated for several traits in dairy cattle 
including milk yield, fat and protein percentage of the milk, 
incidence of diseases and reproductive traits (Sørensen et 
al., 2008). Several studies used crossbred dairy milk cows 
under heat stress and have shown less milk yield that not 
reach an average of 14 kg, but fat and protein percent 
high produce (Khongdee et al., 2010, 2006; Boonkum et 
al., 2011; Chaiyabutr et al., 2008; Barbosa et al., 2008). 
Many studies agree, also reported low milk yield in dairy 
milk cows under heat stress (Table II). This suggests that 
heat stress impact on milk yield is accumulative regarding 
at time (De Boer et al., 1989; Barash et al., 2001). The 
declining of milk yield on crossbreds cows was found at a 
THI of 80 (Boonkum et al., 2011). The THI threshold of 
80 is higher than the thresholds of 72 to 76 reported for US 
Holsteins (Ravagnolo et al., 2000; Freitas et al., 2006a, b; 
Aguilar et al., 2009). High environment temperature cause 
low efficiency of energy for milk produces (Wayman et al., 
1962; Habeeb et al., 2018). Suggesting, animals under heat 
stress the energy costs are used mostly for heat dissipation 
mechanism (e.g. sweating rate), and not are used for milk 
produce (Chaiyabutr et al., 2008). Then, if consume rate 
energy decrease within mammary could be affecting 
the activities of epithelial cells within mammary gland. 
In context, the transport of glucose for utilization in the 
mammary gland has been noted to depend on the specific 
glucose transporter at the mammary cell membrane 
(Prosser, 1988; Madon et al., 1990; Avendaño et al., 
2012), and the rate-limiting step for glucose transport at 
the mammary cell (Chaiyabutr et al., 2007). Barbosa et al. 
(2008) not reported significantly different (P>0.05) milk 
yield and fat percent on Gir x Holstein with 25 (5.34 kg 
and 4.08%), 50 (8.61kg and 4.45%), 62.5 (7.42 kg and 
3.87%) Holstein blood cows, and 62.5 inter se (5.76 kg 
and 3.89 %) Holstein and Zebu blood cows. Genetic group 
with 50% Holstein had shown numerically difference 
greater amount of milk and fat percent as expected, the 
maximum heterosis occurred in this genetic group and was 
probably determined by non-additive genetic effects. This 
was true even for fat percent, which normally presents 
high estimates of heritability (Barbosa et al., 2008). Think 
suggested that in hot climates the first crossbred generation, 
under optimum management and feeding conditions, can 
be used for dairy purposes (McDowell et al., 1996). Lobo 

et al. (1984), working in Brazil with five generations of 
Pitangueira breed cows reported a significant advantage 
in milk yield of the F1 generation regarding milk yield 
of other generations, although there were no important 
differences between the remaining generations. Animals 
having on average 75% Zebu, the crossbred cows are 
generally less productive. Syrstad (1989) concluded that 
there was a reduction of approximately 24% in milk yield 
in inter se crossbred cows, probably as a consequence of a 
reduction in heterozygosity from the F1 to F2 generations 
due to discontinuity in the combinations of the epistatic 
genetic effects (Syrstad, 1989). In other words, although 
the crossbreds usually produces less milk than Holsteins, 
crossbreeding improves health and fertility (Rinell and 
Heringstad, 2018).

CONCLUSIONS

The crossbred dairy cows improve considerably body 
condition score, respiration rate, rectal temperature, and 
they own higher tolerance at heat than purebred cows. 
Milk yield not improves regarding Holstein cows, but 
fat and protein percent it is greater than Holstein cows. 
Apparently the crossbred in dairy cattle is the answer 
to improve productive and physiological responses 
dependent upon environment, however, does not exist 
crossbred in dairy cattle perfect. Crossbreeding of dairy 
cattle is being explored mostly for its potential to improve 
the fertility, health, and survival of cows, and advantages 
for these traits might compensate for loss in production 
of crossbreds compared to pure Holsteins. There have 
been many crossbreeding programs in dairy cattle, but 
when the producer choose a system crossbreeding in dairy 
cows always mostly contemplate only body weight, body 
condition score, dry matter intake, and feed efficiency. Is 
necessary, contemplate other traits like genetic potential, 
lactation (305 d), lactation number, fertility rate, and 
economic impact to observe clarity the potential of each 
crossbred in dairy cattle in the future.

According to the concepts discussed in this review, we 
sustain that crossbreeding in dairy cattle improves certain 
productive and physiological responses diminishing the 
effect of environmental heat stress.
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