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INTRODUCTION

The extensive application of pesticides in agriculture 
poses a growing risk of environmental contamination 

to water, food, and soil (Battaglin et al., 2014). Among 
them, glyphosate-based herbicides (GBH) stand as the 
most frequently applied organophosphate pesticide in the 

world (Myers et al., 2016). GBH’s key action is to inhibit 
the 5-enolpyruvylshikimate-3-phosphate synthase enzyme 
pathway, which is present exclusively in plants and absent 
in vertebrates (Duke, 2018). Consequently, GBH has been 
traditionally deemed safe for non-target organisms. 

Studies have evidenced that GBH can reach different 
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Abstract | The widespread use of glyphosate-based herbicides (GBH) in agricultural practices raises major concerns 
regarding potential human toxicity. Mounting evidence from prior studies has delineated a direct link between GBH 
exposure and the development of neurodegenerative disorders. These compounds are also suspected of being involved 
in the induction of affective disorders. The present study was undertaken to examine the dose-dependent impact of 
GBH exposure over 8-week period on anxiety- and depression-like behaviors in male Wistar rats, administering daily 
subcutaneous injections of four different doses 25, 50, 75, and 100 mg/kg of GBH while a control group received 
0.9% NaCl. Based on behavioral tests (the open field, elevated cross maze, and forced swim), behavioral alterations 
were detected, specifically anxiety levels and depressive behavior. Simultaneously, hippocampal oxidative stress markers 
(catalase, nitric oxide, and lipid peroxidation) were assessed to elucidate the involvement of oxidative stress (OS) in 
the observed effects. Our results delineate a clear dose-dependent effect of GBH, revealing escalated anxiety and 
depression-like behaviors at doses of 75 and 100 mg/kg following subchronic GBH exposure. Notably, markers of OS 
exhibited discernible alterations solely at 75 and 100 mg/kg, with no significant variation observed at lower doses (25 
and 50 mg/kg). Our study confirms the dose-dependent effect of subchronic exposure to GBH, implicating markers 
of OS in the hippocampus as potential contributors to the observed neurobehavioral changes. Thus, our findings 
underscore OS as a plausible mechanism explaining the underpinnings of the neurotoxic effects observed following 
exposure to GBH.
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regions of the body after crossing the mucosa (Brewster 
et al., 1991), accumulating notably after chronic exposure 
even to low doses of this pesticide (Anadón et al., 2009). 
GBH residues are detected in the organs and urine samples 
of farmers and various animal species, according to reports 
indicating prevalence in 99% of urine samples in France and 
60–80% in the USA (Ferreira et al., 2021; Grau et al., 2022).

This chronic exposure can pose a serious health risk for 
humans and animals, such as hepatic cancer and endocrine 
effects (Benachour et al., 2007; Davoren and Schiestl, 
2018; Wang et al., 2011). In addition, GBH’s ability 
to invade the blood-brain barrier induces neurological 
diseases (Martínez et al., 2018), supported by clinical 
reports linking its increased use to conditions like anxiety, 
depression, Parkinson’s, autism, and memory impairments 
(Mostafalou and Abdollahi, 2018; Pu et al., 2020). 

Even though the exact mechanism underlying GBH-
induced anxiety and depression behaviors remains poorly 
understood, it is well established that mood disturbances 
can occur as a result of intestinal microbial degradation 
(Rueda-Ruzafa et al., 2019), neuroinflammation (Winstone 
et al., 2022), and/or disbalance in neurotransmitter systems 
provoked by this pesticide (Ait-Bali et al., 2020; Baier 
et al., 2017; Cattani et al., 2017; Martínez et al., 2018). 
Indeed, oxidative stress (OS) could be a key mechanism 
behind the neurotoxicity induced by GBH. Moreover, the 
literature has highlighted the role of OS, such as elevated 
free radicals as well as oxidant/antioxidant imbalances, in 
the pathophysiology of mood disturbances like depression 
and anxiety (El-Brouzi et al., 2021; Lamtai et al., 2020; 
Rezqaoui et al., 2023; Zghari et al., 2023a). In this context, 
it can be hypothesized that GBH-provoked OS may 
participate in behavioral changes such as affective disorders.

The long-term effects of low-dose GBH exposure on 
affective disorders have yet to be fully explored. Moreover, 
studies on the dermal route of exposure are rare compared 
with the oral route (Moser, 2007). In view of the forgoing, 
this work aims to assess the affective behavior of male rats 
exposed subchronically to GBH at different doses and to 
establish the possible implication of OS pathways in the 
rat hippocampus.

MATERIAL AND METHODS

Pesticide
The herbicide applied in this study is a commercial 
formulation currently on the Moroccan market, 
BARBARIAN SUPER 360 (Barclay chemicals 
manufacturing Ltd).

Animals and study design
Wistar male rats (120 ± 20 g), offered by the breeding 

center of Ibn Tofail University. They were maintained in 
standard conditions of temperature (22 ± 2oC), photoperiod 
12h/12h, and they had free access to food and water. Rats 
were divided into five groups of 6 animals, receiving a daily 
subcutaneous injection for 8 weeks (subchronique toxicity): 
(1) control group receiving NaCl 0.9%, (2) GBH groups 
receiving a commercial glyphosate herbicide diluted in 
saline solution at different doses (25, 50, 75 and 100 mg/
kg/day), basis on the Glyphosate no-observed adverse 
effect level (NOAEL) for subchronic toxicity (Williams et 
al., 2000). A daily preparation of solutions prevents the risk 
of degradation of GLY. All experimental procedures are 
conducted in accordance with the regulations of the guide 
for the care and use of Laboratory Animals University 
Ethics Committee guidelines (National Research Council, 
Revised, 1996) (Figure 1).

Figure 1: Timeline of the glyphosate-based herbicide 
(GBH) exposition study. The open field test (OFT), elevated 
plus maze test (EPM), forced swimming test (FST), nitric 
oxide (NO), lipid peroxidation (LPO), catalase (CAT).

Neurobehavioral tests
Open field test
The open field test (OFT) is used to estimate anxiety-like 
behavior (Carola et al., 2002). We consider that the surface 
of the box (100-L × 100-W × 40-H cm) is divided into 
central and peripheral regions. Each rat was monitored 
for 10 minutes to calculate the time spent in the central 
zone (TCA), the number of visits to the center (NRC), 
and the total number of squares (NTS). The exploration 
of the center reflects the level of anxiety, and the number 
of total squares is an indicator of locomotion. The test box 
was cleaned using 10% ethanol between animals.

Elevated plus maze 
In rodents, the elevated maze plus (EPM) test is frequently 
used to identify anxiety levels (Pellow et al., 1985). The 
apparatus is composed of two opposite open (50 × 10 cm) 
and closed arms (50 × 10 × 40 cm). Each animal was placed 
in the intersection of the arms and allowed to explore it 
for 5 minutes. After analyzing the number of entries 
(EOA) and the time spent in the open arms (TOA), low 
exploration of the open arms is an indication of an increase 
in anxious behavior.

Forced swimming test
The forced swimming test (FST) is designed to assess 
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the state of depressive illness (Roger, 2000). The animals 
are placed in a glass cylinder (30-D, 50-H cm). The total 
duration of immobility (TIM) during the test session 
was scored; an important level of immobility is a sign of 
depressive-like behavior (Rhaimi et al., 2023). 

Oxidative stress indices
After behavioral evaluation, rats were euthanized by 
decapitation; the hippocampus was collected on ice, 
homogenized in 0.1M ice-cold phosphate-buffered saline 
(PBS) pH 7.4, and centrifuged at 1500 rpm for 10 min. The 
supernatant is preserved at -80°C until use. To examine 
the antioxidant defense system and any possible oxidative 
damage in the hippocampus.

Determination of nitric oxide
An excessive amount of nitric oxide (NO) in the 
hippocampus was tested using the Griess reagent (Chao et 
al., 1992). The mixture of 100 μL of Griess reagent, 300 μl 
of the sample, and 2.6 mL of distilled water was incubated 
for 30 min, and the optical density was measured at 548 nm.

Lipid peroxidation assay
Referring to the Draper and Hadley measurement 
method, the reaction of thiobarbituric acid (TBA) with 
malondialdehyde (MDA) is used to determine the 
concentration of thiobarbituric acid reactive substances 
(TBARS), which is one of the markers of lipid peroxidation 
(LPO). The reaction product is quantified at 532 nm 
(Draper and Hadley, 1990).

Catalase activity
Catalase activity (CAT) in hippocampal homogenate is 
evaluated using the method detailed by Aebi (1984). The 
decrease in H2O2 absorbance at 240 nm was recorded every 
30 seconds for 2 minutes. CAT activity was expressed as 
IU/min/g of tissue.

Statistical analysis
All analyses were conducted by an observer blind to the 
treatment conditions. Figures were made using GraphPad 
Prism 8 software (Graph Pad Software Inc., La Jolla, 
California, United States). Data were represented as mean 
± standard error of the mean (SEM) and analyzed using 
one-way ANOVA followed by Tukey’s post hoc test for 
multiple comparisons (Version 22 SPSS). A comparison 
of groups is considered statistically significant if p < 0.05.

RESULTS AND DISCUSSION

Effect of repeated GBH exposures on the levels 
of anxiety-like
The open-field results demonstrate a decrease in the TCA 
(Figure 2A) in GBH-50, 75, and 100 mg/kg-treated rats 

with significant decreases (p < 0.05, p < 0.01, and p < 0.01, 
respectively) compared to the controls. Whereas the GBH-
25 mg/kg group showed no variation compared to the 
control group. Moreover, GBH affects the NRC parameter 
(Figure 2B) only at 75 and 100 mg/kg, compared with 
the control group (p < 0.05). On the other hand, GBH 
administration leads to a decrease in locomotor activity in 
rats (Figure 2C), with GBH inducing a mean decrease in 
NTS at doses of 50, 75, and 100 mg/kg.
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Figure 2: Effects of GBH (25, 50, 75 and 100 mg/kg) 
administration on anxiety associated behaviors in male 
rats. (A) Total amount time spent in the center (TCA); 
(B) Number of returns into center area of the arena in the 
open-field behavior apparatus (NRC); and (C) Number 
of total squares (NTS) in the open field test. Results are 
expressed as mean ± SEM. * p<0.05, ** p<0.01, *** p<0.001.
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Figure 3: Effects of GBH (25, 50, 75 and 100 mg/kg) 
administration on anxiety associated behaviors in male 
rats. (A) Number of entries in exposed arms (EOA); (B) 
Total amount of time spent in exposed arms (TOA); and 
(C) Total number of arms entries (TEA) in elevated plus 
maze. Results are expressed as mean ± SEM. * p < 0.05, ** 
p < 0.01, *** p < 0.001.

According to the EPM, Figure 3A shows that GBH 
administration produces a significant anxiogenic effect, 
characterized by a significant decrease in TOA at doses of 
75 and 100 mg/kg compared with control rats (p < 0.05). 
Finally, no significant difference in TEA was observed 

between groups (Figure 3C).

Effect of repeated GBH exposures on the levels 
of depression-like 
Based on the results from the FST presented in Figure 4, 
analyses revealed that GBH-50, 75, and 100 mg/kg groups 
presented significantly longer periods of immobility, 
indicating the development of highly depressive-like 
behavior compared to saline-treated rats (p < 0.05). In 
contrast, GBH at the dose of 25 mg/kg did not affect the 
immobility time (p > 0.05).
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Figure 4: Effects of GBH (25, 50, 75 and 100 mg/kg) 
administration on depression-related behavior of male 
rats subjected to the forced swimming test, immobility 
time expressed in seconds. Results are expressed as mean ± 
SEM. * p < 0.05, ** p < 0.01, *** p < 0.001.

Effect of repeated GBH exposures on oxidative 
stress parameters 
Measurement of NO in the hippocampus after GBH 
treatment showed a pronounced dose-dependent effect 
(Figure 5A). GBH at doses of 75 and 100 mg/kg produced 
a significant increase in NO levels compared to the control 
group (p < 0.05 and p < 0.01, respectively). In addition, 
GBH at 75 and 100 mg/kg induced a significant increase 
in NO levels compared with the GBH-25 and GBH-50 
groups.

On the other hand, GBH increases LPO levels in the 
hippocampus in a dose-dependent manner. As observed 
in Figure 5B, the subchronic administration of GBH at 75 
and 100 mg/kg induced a significant increase in TBARS 
levels in comparison with the control, GBH-25, and 
GBH-50 groups (p < 0.05).

Also, according to Figure 5C, GBH treatment affected the 
activity of antioxidant enzymes. A dose-dependent effect 
was observed at 75 and 100 mg/kg. Treatment with GBH 
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at 75 mg/kg induced a significant increase in CAT activity 
compared with the control, GBH-25, and GBH-50 mg/
kg groups (p < 0.05). Additionally, the GBH at 100 mg/kg 
induced a considerable increase in CAT activity, and the 
statistical analysis showed a highly significant increase in 
comparison with all other groups (p < 0.001).
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Figure 5: Measurement of oxidative stress parameters in 
the hippocampus after 2 months of GBH exposure (25, 
50, 75 and 100 mg/kg). (A) the nitric oxide (NO) levels, 
(B) Changes in catalase activity, (C) Determination of the 
lipid peroxidation levels. Results are represented as mean ± 
SEM. The significance level is 0.05. *p < 0.05, **p < 0.01, 
***p < 0.001.

The present research was conducted to better understand 
the effects of repeated subcutaneous administration of 
GBH on affective disorders and OS in the hippocampus 
of adult rats. The results obtained in our study indicate that 
subchronic exposure to GBH causes a series of neurotoxic 
effects, including: (1) increased anxiety- and depression-
like behaviors with impaired locomotor activity in rats; (2) 
increased LPO and NO levels and elevated CAT activity 
in the hippocampus; (3) GBH induces its effects in a dose-
dependent manner.

Regarding the effects on affective disorders, our data clearly 
show that subchronic administration of GBH induces 
anxiety and depression behaviors in a dose-dependent 
manner, as measured in the OFT, EPM, and FST. In 
agreement with our results, Baier et al. (2017) reported 
anxiogenic behavior at 50 mg/kg of the GBH in adult 
mice, administered intranasally for 4 weeks. In addition, 
subchronic exposure to 1% GBH in drinking water 
from gestational day 5 up to post-natal day 60 increased 
immobility time in the forced swimming test (Cattani et 
al., 2017). However, Gallegos et al. (2016) demonstrated 
that rats orally administered 100 or 200 mg/kg of GBH 
(Glifloglex®) in gestation and lactation had reduced anxiety 
scores in adulthood in comparison with control rats. These 
disparities could be attributable to the varying commercial 
formulations of Gly given, as well as the route and duration 
of administration (Ait-Bali et al., 2020).

The precise mechanism behind GBH-provoked anxiety 
and depression is not fully understood. Interestingly, 
OS induced by this pesticide may be one of the main 
mechanisms behind the anxiety- and depressive-like 
symptoms exhibited by adult rats. In this regard, it is well 
documented that OS, which results in an overproduction 
of free radicals and a reduced antioxidant ability to detoxify 
these reactive products, plays an essential role in the etiology 
of numerous psychiatric disorders, including depression 
and anxiety (Brikat et al., 2024; Naïla et al., 2021; Zghari et 
al., 2023b; Nassiri et al., 2024). Accordingly, the OS state 
in the HPC we observe in GBH-treated rats, accompanied 
by increased levels of affective disorders, supports this idea. 
Due to its lipid-rich composition and high oxygen demand, 
HPC is highly sensitive to oxidative damage (Huang et 
al., 2015). This brain structure is strongly implicated in 
emotion regulation (Campbell and Macqueen, 2004), and 
imaging techniques reveal anomalies in the function and 
structure of the HPC in patients suffering from mood 
disturbances (Etkin, 2010).

In this experiment, the ability of GBH to cause LPO 
in the rat HPC via NO generation was confirmed after 
subchronic administration of this herbicide in a dose-
dependent manner. In line with our findings, recent studies 
in rats have revealed that exposure to GBH induces OS in 
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various tissues, particularly the brain, underscoring the fact 
that oxidative damage is a key mechanism of neurotoxicity 
(Cattani et al., 2014; Faria et al., 2021; Wang et al., 2022). 
Also, Turkmen et al. (2019) observed an increase in LPO 
levels induced by free radical action in the brain following 
GBH administration at 375 mg/kg by oral gavage for 
8 weeks. In an in vitro study, glyphosate was shown to 
produce OS, reflected by an increase in NO as well as LPO 
(Martínez et al., 2020). Importantly, mitochondria, the 
main source of free radicals within cells, can be targeted 
by GBH (Astiz et al., 2009). In this sense, it has been 
demonstrated that in vitro exposure to this herbicide 
causes loss of mitochondrial membrane potential by 
inhibiting the activity of mitochondrial respiratory chain 
enzymes and creatine kinase (CK), an enzyme linked 
to energy metabolism that can generate free radicals’ 
production, leading to OS state (De Liz Oliveira Cavalli 
et al., 2013; Neto da Silva et al., 2020). Also, GBH was 
found to reduce levels of cardiolipin, a phospholipid 
implicated in the electron transport chain (De Liz 
Oliveira Cavalli et al., 2013; Neto da Silva et al., 2020). 
On the other hand, neuroinflammation may be another 
process that contributes to GBH-induced OS. Through 
its pro-inflammatory effects, GBH activates microglia and 
astrocytes, which then release various molecular signals, 
notably TNF-α, IL-6, and the S100B protein in the 
mice’s CNS (Gallegos et al., 2020; Ait-Bali et al., 2020). 
Consequently, by triggering inducible nitric oxide synthase 
(iNOS), these inflammatory cytokines generate increased 
NO production, which in turn increases oxidative damage 
in the brain (Szepanowski et al., 2018).

Additionally, GBH-induced oxidative damage was also 
confirmed in our study by increased CAT enzyme activity 
in the hippocampus of rats. CAT is one of the most effective 
antioxidants in the brain, with the ability to defend against 
oxidative attack, and variations in its activities are used as 
markers of the antioxidant status of organisms (Lee et al., 
2020). In parallel with our finding, the study of Gallegos 
has shown that GBH can affect CAT activity in the brains 
of adult rats (Gallegos et al., 2020). In this context, it is 
essential to highlight that any variation in antioxidant 
enzyme activity, whether decreased or increased, reveals OS 
(Peng, 2015). Taken together, the changes in CAT activity 
and the massive production of NO induced by GBH lead 
to OS. As a result, oxidative damage occurs to essential 
biomolecules such as lipids, resulting in cell damage in 
the hippocampus. These changes could contribute to the 
neurobehavioral disorders observed in the present study.

CONCLUSIONS AND 
RECOMMENDATIONS

The current study sheds light on the neurotoxic potential 

of subcutaneous GBH exposure, providing evidence for 
dose-dependent neurobehavioral alterations and oxidative 
stress markers in the hippocampus of rats. These findings 
underscore the need for further exploration into the 
mechanisms underlying GBH-induced neurotoxicity and 
reinforce the importance of assessing the long-term effects 
of low-dose GBH exposure on neurological health. Such 
investigations are vital in understanding and mitigating 
the potential risks associated with GBH exposure in both 
environmental and human health contexts.
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