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Introduction

Due to its substantial contribution to modern industry, 
lead is now a common environmental pollutant (Ab-

dul Kareem, 2014). Exposures at work and to the environ-
ment, however, continue to be a significant issue in many 
emerging and industrializing nations (Sawsan et al., 2018). 
Because of its dispersal in the surrounding air, drinking wa-
ter, numerous foods, and dust, lead is effectively the most 
abundant non-essential element in the human organism. 
Pb+2 is one among the top ten chemicals of public health 

concern, according to the World Health Organization 
(Shojaeepour et al., 2018). Its toxicity is linked to its build-
up in specific tissues and interference with bio elements, 
which play key roles in various bio- functional processes. 
It has numerous negative consequences such as neurolog-
ical (Omotoso et al., 2015). behavioral (Al-Megrin et al., 
2019), renal (Abd AL-Zahra et al., 2023), hepatic (Patra 
et al., 2001), and  hematological (Omotayo et al., 2022). 
Pb+2 biological excretion is exceedingly challenging and 
can persist for a very long period in soft tissues, bones, and 
other vital organs (Abd El-Hack et al., 2019). Studies in-
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dicate that oxidative stress may play a significant role in 
activating Pb+2 toxicity, even if the precise mechanism of 
Pb+2 toxicity in the tissue is not yet fully understood (Far-
mand et al., 2005). When heavy metal toxicity, such as Pb+2 
poisoning, is being treated, chelation  are employed in the 
removal of heavy metals from the body by a type of bond-
ing of ions and molecules to metal ions, these ligands are 
called chelating agents, or sequestering agents (Caglayan 
et al., 2019).  It has been observed that some unfavorable 
side effects are caused by the chelators used in lead treat-
ment (Alcaraz-Contreras et al., 2016), as well as it did not 
have effective effect on subtraction and reduction of lead 
content accumulated in the tissue (Andersen and Aaseth, 
2016). Consequently, a considerable amount of recent re-
search has focused on various methods for treating lead 
toxicity, with a particular emphasis on plant-based medi-
cations (Abd El-Hack et al., 2019). The active ingredients 
in herbal products protect the tissues and inhibit the stages 
of oxidative stress (Caglayan et al., 2019). Generally, herbal 
materials have been included in recent scientific concerns 
as natural alternatives in detoxification of heavy metals 
(Caglayan et al., 2019). Flavonoids are phenolic chemicals, 
that represent plant secondary metabolites. They are com-
monly found in foods and exhibit antioxidant, antibacte-
rial, anti-cancer, anti- mutagenic, and anti-inflammatory 
properties. (Celik et al., 2019). Flavonoid and glycosides 
have an inhibitory effect on the expression of inducible 
nitric oxide and nitric oxide synthesis, according to (Za-
heer et al., 2020). Because there is conflicting information 
in the literature regarding the potential protective effects 
of Chrysin (Chy) and Ginkgo biloba (Gnk) against Pb+2 
induced oxidative damage to the liver (Abd El-Hack et 
al., 2019). The aim of this current investigation was to as-
sess potential protective effects of Chy and Gnk against 
lead-induced oxidative liver damage. Biological methods 
were employed as biomarkers of lead toxicity, including 
measurements of malondialdehyde (MDA), glutathione 
(GSH) and myeloperoxidase (MPO)  activities, plasma 
tumor necrosis factor-alpha (TNF-α) and interleukin one 
beta (IL-1β) level along with an evaluation of liver histo-
logical profile.

Materials and methods

Chemical and drugs
The chemicals used in the experiment were included, Lead 
(II) chloride (PbCl2), and chrysin (5,7-dihydroxyflavone 
[C15H10O4] with 97% purity, were supplied by  the Sig-
ma-Aldrich Chemical Company (St Louis, MO, USA). 
Ginkgo biloba (contain 24% flavanol glycosides), and ter-
pene trilactones (TTLs) (6%, including four kinds of gink-
go ides and bilobalide), purchased from Hisham Abdullah 
Pharmacy and the drug originates from China (Zhejiang 
Comba Pharmaceutical Co.).  

Animals
All experiments were carried out on male Wistar rats 
(n=24) weighing 250 ± 10 g, brought from the animal 
house of the College of Veterinary Medicine, University 
of Basra. The animals were housed in clean plastic cages 
and given a week to acclimate in the laboratory setting 
(temperature = 22.5 C0 with 12-hour dark/light cycle and 
ventilation system). During the trial, animals had unlimit-
ed access to food and water. Before conducting the study, 
official approval was obtained from the Professional Ethics 
Committee of the College of Veterinary Medicine, Uni-
versity of Basra. All ethical standards were strictly adhered 
to during this study.

Design of an experiment 
The animals were divided into four groups of 6 rats each 
at random, and they received treatment for 30 days. The 
Group I served as the negative control and received daily 
oral administration of sodium chloride solution at a dose 
of 2.5 mg/kg/day. Group II rats served as the positive con-
trol and received by orogastric intubation 2.5 mg/kg/day 
lead chloride solution. Group III received 50 mg Chy + 50 
mg Gnk /kg/day. Group IV received 50 mg Chy + 50 mg 
Gnk + 2.5mg Pb/kg/day. After the treatment, 24 hours fol-
lowing the last dose, animals were decapitated without an-
esthetic, and arteriovenous blood was promptly collected. 
A transverse abdominal incision was used to remove the 
liver, which was then frozen for use in later transactions.

Tissue extract preparation
Livers were promptly removed, rinsed with 0.9% ice-
cold physiologic saline solution, blotted dry, and weighed. 
All tissues were homogenized in ten volumes of ice-cold 
trichloracetic acid (1 g tissue plus 10 mL 10% TCA) for 
30 seconds. To remove cell debris, nuclei, and mitochon-
dria from homogenates, they were centrifuged at a speed 
of 10,000g for 10 min at 4°C. The MDA levels were meas-
ured for products of lipid peroxidation through monitoring 
thiobarbituric acid  responsive substance formation as de-
scribed earlier (Beuge and Aust, 1978). Lipid peroxidation 
was calculated as nmol MDA/g tissue and represented as 
MDA equivalents using an extinction coefficient of 1.56 x 
105 M-1 cm1.

Glutathione (GSH) assay 
A modified version of the Ellman procedure was used to 
measure glutathione (Beutler, 1978). Briefly, 2 mL of 0.3 
mol/L Na2HPO4.2H2O solution was added to 0.5 mL 
of supernatant following centrifugation at 2,000g for 10 
min. Immediately after adding a 0.2 mL solution of dith-
iobisnitrobenzoate (0.4 mg/mL 1% sodium citrate), the 
absorbance at 412 nm was measured by spectrophotometer 
(model UV-1700, Shimadzu, Japan). The extinction coef-
ficient used to compute glutathione levels was 1.36 x 105 
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M-1 cm1. The outcomes are displayed in mol GSH/g tissue. 

Myeloperoxidase activity (MPO) assay
MPO activity of tissue was evaluated by determining the 
H2O2- dependent oxidation of dianizidine -o- 2HCl. Brief-
ly, hexa- decyltri- methyl-ammonium bromide (HETAB; 
0.5%, w/v) was added to 10 ml of ice-cold potassium phos-
phate buffer (50 mmol /L K2HPO4, pH 6.0) to 0.2–0.3 g 
of homogenize tissue samples. By detecting the H2O2-de-
pendent oxidation of dianizidine- o- 2HCl, MPO activity 
was determined. The amount of MPO present per gram 
of tissue that resulted in a 1.0/min change in absorbance 
at 460 nm was defined as one unit of enzyme activity by 
spectrophotometer (model UV-1700, Shimadzu, Japan)   
(Hillegass et al., 1990). 

Pro-inflammatory cytokines detection (TNF-α 
and IL-1β) 
Enzyme-linked immunosorbent assay (ELISA) kits were 
used that were designed specifically for measuring TNF-α 
and IL-1β of blood plasma according to the manufactur-
er’s instructions and guidelines. ELISA microplate reader 
(Spectra Max 190, Molecular Devices Corporation, Sun-
nyvale, CA) was utilized to record the absorbance at 450 
nm. The careful examination of five independent stand-
ard series replications, the assessment of the deviation of 
TNF- and IL-1β concentrations in experimental animal 
groups, and the evaluation of visual analysis of whole UV-
Vis spectra were all meticulously carried out.

Histopathological assay
Each sacrificed rat’s liver were removed at the end of the 
trial. They were then prepared for paraffin sectioning by 
dehydrating in various concentrations of alcohol, employ-
ing xylol to clean, and embedding in blocks of paraffin af-
ter being fixed in 10%  buffered formalin. For histopatho-
logical investigation, sections of tissue with a thickness of 
around 5 µm were stained with Harris  hematoxylin  and 
eosin staining (H&E) (Ada and Delia 2014), and exam-
ined under a microscope at 400X magnification.   

Statistical analysis
The data were analyzed statistically using one-way ANO-
VA with the SPSS 18th version. The mean± SD was used 
to express all data. All significant differences were repre-
sented at p≤0.05.

Results

MDA as expression to Lipid peroxidation assay
The lipid peroxide level of liver tissue was expressed 
through MDA and results were presented in Fig.1-A. Rats 
of group II exhibited a statistically significant (p≤0.05) in-
crease (93±8.99) when compared with other groups. While 

group IV showed a statistically significant (p≤0.05) de-
crease (63±3.4) compared to the group II, and an increase 
compared to the control group (p≤0.05) and the group III 
(p≥0.05).

Glutathione (GSH) activity 
We noted a significant (p≤ 0.05) decrease in the GSH level 
of liver tissue in group II rats treated with 2.5mg Pb+2/kg 
BW, compared with other experimental treatments. GSH 
level in group IV rats remained parallel (p≥0.05) with that 
of control group (Fig.1-B).

MPO level
A significant (p≤0.05) increase in MOP content was no-
ticed in group II compared with all other groups. On the 
other hand, the group IV reflected a moderate increase in 
the MOP of rats, which was significantly different (p≤0.05) 
as compared to group III and control (Fig.1-C).

Figure 1: Measure of antioxidant enzymes concentration 
in Wistar rats. (A) MDA level (nmol/g); (B) GSH level 
(µmol/g); and (C) MPO activity (U/g). Values are presented 
as means ± S.D of 6 individuals. Different letters indicate 
significant (p≤0.05) differences, and similar letters indicate 
no significant differences among experiment groups

Effect of Chrysin and Ginkgo biloba on plasma 
pro-inflammatory cytokines  
TNF-alpha and IL-1β levels of blood plasma were no-
ticeably higher (p≤0.05) in group II, confirming that lead 
poisoning is tightly linked to inflammatory and oxidative 
processes. Group IV exhibited a significant (p≤0.05)  de-
crease in these cytokines level and reached almost similar 
level as that of control and group III rats (Fig.2- A and B).

Histological findings
The histological alterations in the liver tissues were eval-
uated as outlined in Figure 3. The hepatic parenchyma of 
rats in group I exhbited multiple hepatic lobules separated 
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Figure 2: Measure of plasma pro-inflammatory cytokines 
concentration in Wistar rats. (A) TNF-alpha, and (B) 
interleukin 1-beta (IL-1β) levels. Values are presented as 
means ± S.D of 6 individuals. Different letters indicate 
significant (p≤0.05) differences, and similar letters indicate 
no significant differences among experiment groups.

Figure 3: (a): Photomicrograph of a liver from the control 
group represents normal architecture (circle). (e, f ): A 
section of the liver from group III on day 30 showing 
semi-normal architecture, except for slight expansion 
of the hepatocytes sinusoids (arrow) and cytoplasmic 
degeneration (thick arrow). (c, d): section of liver from 
group II at day 30 showing acute hepatocyte necrosis 
(arrow), cytoplasmic degeneration (thick arrow), expansion, 
and necrosis of blood vessels (circle). (g): A section of the 
liver from group IV on day 30 showing a limited extent of 
hepatocyte necrosis (arrow), and cytoplasmic degeneration 

(thick arrow), which also showed limited expansion and 
degeneration of blood vessel walls (circle). H and E. X400, 
(Scale bar 25u).

by delicate connective tissue septa. Each lobule contained 
a central vein with thin walls, surrounded by hepatic cords 
extending to the periphery (Fig. 3 a). While no prominent 
alteration were noticed in the hepatocytes tissue of rats 
treated with Chy + Gnk, the hepatocytes showed with a 
normal pattern, while dilatation of the sinusoidal of the 
portal vein was still identified (Fig. 3 b). Lead poisoning 
rats (group II) showed severe damage to liver tissue, in-
cluding fatty alterations degeneration of cytoplasmic, focal 
necrosis, karyolysis, pyknotic nuclei, the proliferation of 
Kupffer cells, inflammatory cells, as well as of bile ductless 
(Fig. 3. c, d, e, and f ). Group IV reflected the susceptibility 
of the two treatments, Chy and Gnk, to inhibition of liver 
tissue damage due to lead’s harmful impact. Generally, the 
noted improvement partly in liver tissue, represented by a 
few lipid droplets, a small localized necrotic region, and 
cytoplasmic degeneration of hepatocytes accompanied by 
some intravenous congestion (Fig. 3. g).

Discussion 

The fifth most often used metal in the world, lead (Pb+2), 
is harmful to people, and its poisonousness is linked to the 
production of oxidative stress factors (Kao and Rusyniak, 
2016). The route of exposure, the subject’s age, health state, 
the number of exposures, the duration of exposure, and the 
person’s genetic makeup all play a role in the physiological 
damage caused by lead (Chowdhury et al., 2014). Lead is 
absorbed in its organic and inorganic state with the help of 
the respiratory chain and the gastrointestinal tract. Gener-
ally lead has high lipid-solubility  characteristic, this makes 
its transport throughout organs and tissues easier (Rosin, 
2009). Our results confirmed that increases in lipid peroxi-
dation and myeloperoxidase activity caused by lead toxicity 
were followed by significant decreases in hepatic GSH lev-
els in the current investigation. Additionally, higher plasma 
levels of the cytokines TNF-alpha and IL-1β, as well as 
histological studies, revealed the severity of the lead-in-
duced systemic inflammatory response. Generally, in the 
current investigation, it was discovered that lead changes 
liver tissue’s oxidative stress-related metrics. Lead has an 
induced property that throws off the body’s antioxidant 
system’s delicate equilibrium, leading to the development 
of reactive oxygen species and oxidative stress (Taslimi et 
al., 2019). Lipid peroxidation makes significant contribu-
tions to the assessment of liver cell injury, lipid peroxida-
tion produces MDA as a breakdown byproduct (Zheng et 
al., 2020). According to studies, Pb+2 reduced the activity 
of antioxidant enzymes by attaching to their SH- groups, 
which also led to GSH depletion, a non-enzymatic antiox-
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idant, and lipid peroxidation are two examples. As a result, 
the goal of treating Pb+2 poisoning is to remove Pb+2 from 
the body while also removing reactive oxygen species to 
avoid the development of oxidative stress (Alcaraz-Con-
treras et al., 2016). As demonstrated in this investigation, 
the antioxidant Chy and Gnk combined treatment dra-
matically suppressed MDA formation while simultane-
ously replenishing tissue GSH concentration, signifying a 
reduction in lipid peroxidation and cellular injury, which 
protects liver tissues from lead-induced oxidative damage. 
Moreover, our findings indicate a noteworthy elevation in 
plasma levels of TNF-alpha and IL-1β due to lead toxicity. 
Conversely, the combined treatments mentioned earlier re-
sulted in the inhibition of tumor necrosis factors levels. Chy 
is one of the flavonoids present in many plant extracts that 
is frequently used as a traditional medication (Hanedan et 
al., 2018), while numerous distinct terpenoids and flavone 
glycosides are present in Ginkgo biloba extract. The antiox-
idant activity of flavonoids is thought to be one of the pri-
mary processes underlying the pharmacological actions of 
the extract, which is one of its primary impacts. Generally, 
in the study by Zhang et al. (2004), the suppression of lipid 
peroxidation was credited with the protective effect of Gnk 
on hepatic endothelial cells in rats with chronic liver injury. 
Additionally, it was discovered that Gnk increased the ac-
tivity of glutathione peroxidase and superoxide dismutase, 
two antioxidant enzymes that protect brain regions from 
ischemia/reperfusion injury ( Janssens et al., 2000). On the 
other hand, Akdere et al. (2014) established that terpenic 
components suppress free radical production. Flavonoids 
play an important role in the regulation of cellular func-
tions such as cell cycle signals and inflammatory pathways 
(Gargouri et al., 2013). Generally, the relationship between 
oxidative stress and inflammatory response is becoming 
clearer, as oxidative stress contributes significantly to the 
inflammatory process (Lugrin et al., 2014). 

According to reports, oxidant molecules have an impact 
on all stages of the inflammatory process, including the 
release of endogenous danger signal molecules, recognition 
of these molecules by natural immune cells via the toll-like 
receptor (TLR) and NOD-like receptor (NLR) families, 
and activation of signal pathways that initiate an adaptive 
cellular response to these signals are all examples of how 
these signals are processed (Khalil et al., 2019), Hence, oxi-
dative stress initiates NF-κB, instigating the inflammatory 
process (Turillazzi et al., 2016). Subsequently, NF-κB pro-
motes the release of TNF-α and IL-1β, which are pro-in-
flammatory cytokines. Furthermore, NF-κB regulates the 
expression of COX-2 and iNOS proteins. Therefore, in-
hibiting NF-κB becomes essential for therapeutic purpos-
es (Caglayan et al., 2019). According to Liu et al. (2017), 
Pb+2 damages tissue and triggers NF-κB activation and in-
flammation. Flavonoids are crucial for controlling cellular 

processes such as modulating inflammatory pathways and 
cell cycle signals (Gargouri et al., 2013). 

The histology findings observed in current study supported 
biological measurements that showed lead caused oxida-
tive damage, when compared to the usual control group. 
Generally, exposure to lead causes a noticeable liver tissue 
injury represented by dilation in the central vein and blood 
vessels, severe necrosis and degradation of hepatocytes, 
high accumulation of Kuppfer cells, and dilated sinusoids. 
The Chy and Gnk mixed treatment clearly reduced the 
overall necrosis and degeneration of hepatocytes. Chy and 
Gnk, as antioxidants, reduced oxidative stress of MDA and 
MPO in hepatic tissues and maintained the shape, param-
eters, and function of hepatocytes, increased plasma anti-
oxidant capacity and cytokine suppression.  

Conclusion 

Our data demonstrated that oxidative stress caused lead 
poisoning in the liver. The antioxidant and anti-inflamma-
tory activities of Chy and Gnk were found to be applicable 
to Pb-induced hepatic toxicity, and the combined treat-
ment of Chy and Gnk is an encouraging blend in reducing 
liver damage caused by lead exposure. However, more re-
search is needed to support the mechanism of this effect of 
combined Chy and Gnk treatment. 
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