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INTRODUCTION

Goat farming in Thailand has experienced a significant 
increase in recent years, supported by the Department 

of Livestock Development’s concerted efforts to promote 
this livestock sector. Therefore, the goat population in 
the country has significantly increased by approximately 
56% (Megan et al., 2019). While this development was 
promising for the agricultural landscape, it has been 
becoming a new challenge, including the need for a stock 
of roughage, both in terms of quantity and quality (Seo, 

2019). Roughage, as one of the important components of 
goat diets, plays a key role in ensuring their overall health 
and productivity (Woolsoncroft et al., 2018; Ahmed et al., 
2019; Mulisa-Faji, 2021).

Rice straw, which is readily available as a major by-product 
in East and Southeast Asia, has traditionally served as a 
primary source of roughage for ruminants in Thailand 
(Foiklang et al., 2016; Wahyono et al., 2021). However, 
rice straw is characterized by its inherent limitations, 
notably its low nutritive values, as indicated by a low crude 
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protein and metabolizable energy contents (Nader et al., 
2012; Zaghloul et al., 2018; Khonkhaeng and Cherdthong, 
2020). Furthermore, it exhibits poor digestibility by rumen 
microbes, thus necessitating interventions to enhance its 
nutritional profile (Van Soest, 2006).

In response to the challenge of improving the usability of 
rice straw for ruminants, previous studies have focused on 
employing various methods, including physical techniques, 
such as soaking and grinding, biological approaches with 
the addition of enzymes and white rot fungi, and chemical 
methods, such as the application of sodium hydroxide and 
urea (Ibrahim and Pearce, 1984; Zhang et al., 2018; Zayed, 
2018). Despite these efforts, the relatively low nutritional 
content of rice straw, averaging 3–5% protein in dry matter, 
prompts continuous attempts to enhance its quality. The 
primary objective is to boost protein content, which is 
crucial for ruminal microbial fermentation in the rumen, 
supporting overall productivity. Traditional protein sources 
are often expensive, scarce, or limited; new alternatives that 
are useful for solving this problem include industrial by-
products (Sheikh et al., 2018). Utilizing such by-products 
can enhance the nutritional content of rice straw, rendering 
it a more efficient roughage source. This approach involves 
cost-effective feed components, control over forage to 
concentrate ratios, reduced metabolic and digestive issues, 
and decreased feeding labor (Owen, 1984). Among these 
industrial by-products, monosodium glutamate by product 
(MSGB) has emerged as a promising candidate because 
it serves as a rich source of energy, essential amino acids, 
nitrogen content, and minerals, making it a high-value 
component (Rukboon et al., 2019). 

Previous research explored the application of MSGB in 
animal diets, with studies such as that by Keaokliang et 
al. (2018) indicating its potential as a protein source for 
non-ruminants and nonprotein nitrogen for ruminants. 
Moreover, glutamic acid is one of the main components 
in MSGB (Padunglerk et al., 2016), which is a precursor 
for essential amino acids, and stimulates bacterial growth 
in ruminal bacteria incubations from dairy cows, which is 
crucial for maximal ruminal bacterial growth (Kajikawa 
et al., 2002). However, Nombekela et al. (1994) found no 
improvements in dry matter intake with monosodium 
L-glutamate as a flavor supplement in early lactation 
cows. Particularly promising is its positive impact on 
goat concentrate diets, improving feed intake, crude 
protein digestibility, volatile fatty acid concentrations, 
and overall growth performance (Rukboon et al., 2019). 
Additionally, MSGB proved effective in enhancing rice 
straw quality, leading to increased protein content and 
digestibility compared to traditional urea fermentation 
methods (Kongsil, 2017). In summary, MSGB exhibits 
diverse benefits in animal nutrition, ranging from 
improved ruminal bacterial growth to enhanced livestock 

performance and feed quality.

MSGB demonstrates its potential in various livestock 
species, including swine, beef cattle, dairy cows, and goats 
(Padunglerk et al., 2016). The volume of MSGB produced is 
up to 6,200 tons/year (Katsumata et al., 2020). In Thailand, 
MSGB plays a key role in improving the roughage quality 
and solving the problem of shortage of roughage for goats. 

In the past, research focused on using MSGB in goat 
concentrate diets and increasing the rice straw quality by 
using MSGB fermentation methods. However, research 
into the benefits of MSGB for improving rice straw as 
a roughage source in TMR in Thailand remains scarce. 
Therefore, this study seeks to investigate the feasibility of 
using MSGB-treated rice straw as a high-quality roughage 
source in TMR for fattening goats. The primary objectives 
are to reduce the cost of feed while simultaneously 
enhancing animal productivity without compromising the 
health and well-being of the animals. This research aimed 
to shed light on an innovative and sustainable approach 
to address the pressing issue of roughage scarcity in the 
context of expanding goat farming in Thailand.

MATERIALS AND METHODS

The in vitro fermentation study was carried out at the 
feed laboratories of the Faculty of Agriculture, Kasetsart 
University, Bangkok, Thailand.

Feed preparation and treatments
In the present study, the nutritive potentials of four 
roughage sources were examined: Pangola grass hay, rice 
straw, MSGB-treated rice straw, and urea-treated rice 
straw.

Pangola grass hay was prepared following the Thai 
Agricultural Standard (2011) guidelines. Briefly, the grass 
was cut at a regrowth age of 30-d, 5 cm aboveground, sun-
dried in the field for a 3-d period, baled, and kept in the 
shade.

Rice straw was obtained directly from rice fields after sun-
drying over 3 consecutive days. The straw was chopped 
into 2–5 cm lengths using a straw-cutting machine. The 
chopped rice straw was either untreated or treated with 
MSGB or urea. 

For the MSGB-treated rice straw, the MSGB obtained 
from the MSGB factory (Padunglerk et al., 2016) was 
mixed with chopped rice straw at a ratio of 8.8:1.2 (w/w). 
The MSGB was sprayed evenly over the rice straw and 
subsequently allowed to dry in a hot air oven at 60 °C for 
72 h. 
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The urea-treated rice straw was prepared based on the 
following basis according to the method of Kongsil 
(2017). In short, 30 g of urea fertilizer (46-0-0) was mixed 
thoroughly with 1L of clean water. The solution was then 
poured into 1 kg of chopped rice straw. The urea-treated 
rice straw was stored at 30°C for 21 days and then dried at 
60°C in a forced-air oven for 72 h. 

These individual roughage sources (i.e., Pangola grass hay, 
rice straw, MSGB-treated rice straw, and urea-treated rice 
straw) were mixed thoroughly with the concentrated feed 
ingredients to make total mixed rations (TMR) at a ratio 
of 60:40. 

Feed components and the chemical composition of 
individual feed formulas (treatments) are presented in 
Table 1. Samples of the rations were dried at 60°C in a 
hot-air oven for 72 h and ground to pass through a 1 mm 
sieve using a hammer mill before subjecting to chemical 
analysis. 

Table 1: Feed ingredients and chemical compositions of 
TMRs used in this study.
Ingredients Treatments

PH RS MSGB-
TRS

UTRS

Ingredient (kg of DM)
Pangola grass hay 60.0 - - -
Rice straw - 60.0 - -
MSGB-treated rice straw - - 60.0 -
Urea-treated rice straw - - - 60.0
Soybean meal 20.5 24.5 19.5 20.0
Corn 5.5 4.5 6.0 5.0
Cassava chip 12.0 9.0 12.5 13.0
Molasses 0.5 0.5 0.5 0.5
Mineral mix 0.5 0.5 0.5 0.5
Sulphur 0.5 0.5 0.5 0.5
Salt 0.5 0.5 0.5 0.5
Chemical composition
Dry matter, % 92.12 90.86 89.79 81.70
(On DM basis, %)
Crude protein 15.82 16.08 15.67 15.77
Neutral detergent fibre 55.46 52.65 51.91 53.25
Acid detergent fibre 29.82 31.17 28.64 29.65
Ether extract 3.09 2.41 1.83 2.09

PH, Pangola hay; RS, Rice straw; MSGBTRS, MSGB treated 
rice straw; UTRS, 3.5% Urea treated rice straw.

Chemical analysis
Dry matter (DM), crude protein (CP), and ether extract 
(EE) of individual TMRs were analyzed according to 

AOAC (2016) standards. In addition, neutral detergent 
fiber (NDF) and acid detergent fiber (ADF) of those 
individual TMRs were evaluated using the methods 
described by Van Soest et al. (1991).	

Rumen fluid preparation and in vitro studies
Feeding values of TMRs were determined using in vitro 
fermentation protocols (Paul et al., 2023). Rumen fluid 
was collected from five freshly slaughtered goats at an 
abattoir in Bangkok. Approximately 1.5 L of rumen fluid 
was filtered through four layers of cheesecloth, put in an 
airtight vacuum flask, and brought immediately to the 
laboratory. 

An in vitro gas production technique was used to measure 
gas production and its related parameters (Menke and 
Steingass, 1988). The required buffers were prepared 
following the procedures outlined by Menke and Steingass 
(1988). The ratio of buffer to rumen fluid was maintained at 
2:1. Approximately 200 g of individual TMRs (substrate) 
were weighed and placed in a 50 ml serum bottle (10 
bottles per treatment). Subsequently, 30 ml mixed rumen 
solution was added to each bottle; this included 10 bottles 
of blank, which contained everything except the substrate. 
Then, all of the bottles were incubated at 39°C in a hot-air 
oven. The volumes of gas produced were recorded at 2, 4, 6, 
8, 10, 12, 18, 24, 36, 48, 60 and 72 h post-incubation. The in 
vitro dry matter digestibility (IVDMD) of the treatments 
was also determined following the protocols of Blümmel 
et al. (1997). In brief, approximately 500 mg of individual 
TMRs were weighed and placed in a 100 ml serum bottle 
(5 bottles per treatment). Subsequently, approximately 75 
ml of rumen solution was added to each bottle and placed 
in a hot-air oven for incubation at 39°C; five bottles of 
blank containing everything except the substrate were 
run with the samples. At 24 and 48 h post-incubation, 
measurements were performed to assess in vitro dry matter 
digestibility. 

For the collection of rumen metabolite data, the process 
involved preparing serum bottles for the mixture using the 
same method as outlined in the in vitro gas production 
procedure in section 2. Each treatment was performed with 
3 replicates. Samples were collected during fermentation 
at 1, 4, 8, 12, and 24 h post-incubation. The inoculum in 
each bottle was emptied and strained through four layers of 
cheesecloth, which was then divided into two portions. The 
first 18 ml of rumen fluid inoculum was collected and stored 
in a plastic bottle to which 2 ml of 1 M H2SO4 was added to 
halt microbial activity. It was then centrifuged at 10,000 rpm 
for 15 minutes. After that, 10 ml of cell-free supernatant 
was collected and analyzed for ammonia nitrogen (NH3-N) 
following the phenol-hypochlorite reaction method and 
measured by spectrophotometer, as outlined by Chaney and 
Marbach (1962) and Mbiriri et al. (2012); the remaining 
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2 ml of cell-free supernatant was loaded into an HPLC 
vial and then analyzed for volatile fatty acids (VFAs) using 
high-performance liquid chromatography (instruments 
by controller Waters model 600E: Waters model 484 UV 
detector, Milford, MA; column Bio-Rad HPX 87H ion-
exchange column; column size 300×7.8 mm (Bio-Rad 
Laboratories Ltd, Watford, UK); mobile phase 10 mmol/L 
H2PO4) according to Rooke et al. (2014). 

The second portion, consisting of 1 ml of rumen fluid 
inoculum was collected and preserved at -20°C for 
measuring microbial populations by using real-time PCR. 
The analysis included total bacteria, total anaerobic fungi, 
and total protozoa. A community of microorganism DNA 
was extracted from 0.25 g of rumen fluid and digested using 
the repeated bead beating plus column method (Yu and 
Morrison, 2002). The quality and quantity of these DNA 
samples were determined by agarose gel electrophoresis 
and spectrophotometry. 

Data handling and statistical analysis
The cumulative gas production data were fitted to the 
model of Ørskov and McDonald (1979), as shown in 
Equation 1.

		  y = |a|+b [1- e-ct]   …(1)

where y is the volume of gas (mL per 200 mg DM) 
produced at the time (t), a is the gas production from a 
soluble fraction (mL/200 mg DM), b is the gas production 
from the insoluble fraction (mL/200 mg DM), c is the 
gas production rate constant (mL/h), |a|+b the potential 
gas production (mL/200 mg DM) and t is the incubation 
time (h).

In vitro dry matter digestibility (IVDMD) was calculated 
using Equation 2.

Data were subjected to analysis of variance using the 
General Linear Model (GLM) procedures (SAS, 2002). 
Multiple comparisons between treatment means were 
performed using Duncan’s New Multiple Range Test 
(Steel and Torrie, 1980). Pair comparisons of (1) PH 
versus others, (2) RS versus MSGMTRS and UTRS, and 
(3) MSGMTRS versus UTRS were performed using an 
orthogonal contrast method (SAS, 2002). Unless otherwise 
stated, the significance was declared at P<0.05. 

RESULTS AND DISCUSSION

In vitro gas production and IVDMD
The result showed that the cumulative gas production did 

not show a significant difference between the MSGBTRS 
and UTRS at 72 h post-incubation (P>0.05). However, the 
MSGBTRS exhibits a higher cumulative gas production 
compared to that of the PH (Table 2).

The gas produced from soluble fractions (a) and the rate 
constants of gas production (c) showed no significant 
differences. Conversely, gas production from the insoluble 
fraction (b) and the potential extent of gas production 
(d) displayed non-significant variations between the 
MSGBTRS and UTRS (P<0.05). Notably, both treated 
rice straw treatments demonstrated the highest values, 
surpassing those of the PH (Table 2).

In the IVDMD digestibility investigation conducted at 24 
and 48 h post-incubation, a statistically significant difference 
was noted (P<0.001), with the UTRS demonstrating the 
highest digestibility. The MSGBTRS and PH, while not 
exhibiting statistical differences, displayed digestibility 
levels surpassing that of the RS (Table 2). 

The manufacturing of monosodium glutamate (MSG) 
generates a liquid by-product that has significant amounts 
of high-quality protein and NPN (non-protein nitrogen), 
providing valuable resources for the development of rumen 
bacteria and animals (Keaokliang et al., 2018). In addition, 
The MSGB was notable for its crude protein content of 
40.31% and the fact that it contains essential amino acids 
such as glutamic acid, alanine, proline, and aspartic acid, 
among others (Padunglerk et al., 2016). 

Also, it should be noted that both ammonia and urea 
can disrupt the silicified cuticular barrier in leaves as 
well as in rice straw (Muthia et al., 2021). The increasing 
digestibility was observed with these effects and the 
disruption of specific lignin-carbohydrate bonds (Selim 
et al., 2004). The use of ammonia from urea fertilizer 
plays a key role in enhancing the quality of urea-treated 
rice straw, resulting in a 31% increase in digestibility (Van 
Soest, 2006). 

Moreover, Wuisman et al. (2006) observed a significant 
increase in the rumen degradability of dry matter (DM) 
and neutral detergent fiber (NDF) in roughage with 
NPN supplementation. Moreover, Chizzotti et al. (2008) 
and Khattab et al. (2013) indicate that higher levels of 
non-protein nitrogen (NPN) in the diet enhanced the 
digestibility of DM, organic matter (OM), crude protein 
(CP), and non-fiber carbohydrates (NFC).

Rumen metabolites
In this study, rumen metabolites were observed at 2, 4, 8, 
12, and 24 h post-incubation. The results of both NH3-N 
and VFAs are presented in Table 3.
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Table 2: The impact of different roughage sources on enhancing rice straw quality in goat TMR diet on cumulative gas 
production, the kinetics of gas production and the percentages of IVDMD (%).
Items Treatments SEM P-value Contrasts

PH RS MSGBTRS UTRS PH vs  
Others

RS vs MSGB-
TRS+UTRS

MSGBTRS
vs UTRS

Cumulative gas production (h/ml)
1 3.10 4.26 3.58 3.20 0.199 0.149 0.194 0.071 0.479
2 4.08b 6.33a 5.55ab 4.65ab 0.267 0.006 0.008 0.027 0.149
4 6.45b 9.35a 7.483ab 6.45b 0.434 0.001 0.001 0.005 0.257
6 7.15b 12.05a 9.483ab 8.38b 0.531 0.003 0.006 0.005 0.344
8 9.42b 14.37a 11.63ab 10.28b 0.585 0.007 0.022 0.007 0.318
10 11.25b 16.83a 14.25ab 12.32b 0.652 0.005 0.013 0.010 0.198
12 12.70b 18.67a 16.23ab 13.97ab 0.733 0.011 0.017 0.024 0.196
18 14.80b 22.63a 19.77ab 17.38ab 0.947 0.014 0.010 0.047 0.013
24 16.82b 25.73a 23.40ab 20.88ab 1.105 0.018 0.006 0.129 0.349
36 20.83 29.95 29.05 26.72 1.375 0.071 0.014 0.505 0.514
48 24.08 35.17 34.77 32.58 1.671 0.054 0.008 0.686 0.609
60 26.98 39.02 39.47 35.78 1.814 0.041 0.006 0.724 0.422
72 29.05b 42.08ab 43.21a 38.20ab 1.932 0.027 0.005 0.738 0.297
Fermentation kinetic values1

a 2.63 4.36 3.53 2.65 0.247 0.025 0.082 0.023 0.151
b 30.20b 40.97ab 51.52a 47.03a 2.739 0.024 0.006 0.161 0.503
c 0.031 0.035 0.021 0.023 0.002 0.074 0.283 0.017 0.767
d 32.94b 45.33ab 55.06a 49.68a 2.801 0.024 0.006 0.243 0.434
In vitro dry matter digestibility, % (IVDMD)
24 h 72.47b 65.02c 72.27b 82.07a 1.587 <0.001 0.697 <0.001 <0.001
48 h 83.25b 78.56c 82.45b 89.23a 0.920 <0.001 0.819 <0.001 <.0.001

a,b,c Means with different superscripts in row are highly significantly different (P<0.01) and significantly different (P<0.05). 1a = 
The gas production from soluble fractions (ml), b = The gas production from insoluble fraction (ml), c = The rate constants of gas 
production (ml) and d = The potential extent of gas production (ml).

The mean concentration of NH3-N showed no statistically 
significant differences (P>0.05) among the treatments. 
However, the MSGB exhibited the highest concentration of 
NH3-N when compared to other treatments. Nevertheless, 
significant variations were observed at 4, 8, and 24 h post-
incubation; in particular, the UTRS showed the highest 
values, but the other treatments did not show significant 
differences. However, the concentration of NH3-N in the 
MSGB was higher than in the RS and PH (Table 3). 

The increase in ruminal NH3-N concentration could be 
attributed largely to the efficient breakdown of urea into 
ammonia (Weiner et al., 2015). 

The mean concentrations of total VFAs, the proportion 
of acetate, propionate, and butyrate and the C2:C3 ratio 
did not show statistically significant differences among the 
treatments (P>0.05). Nonetheless, at 8 h post-incubation, 
the results of all parameters for VFAs were significantly 
different between treatments, except for the proportion 

of butyrate. The RS and MSGBTRS showed the highest 
concentrations of total VFAs and proportions of propionate; 
however, the proportion of acetate and the C2:C3 ratio 
showed the lowest concentration (P<0.05). These VFA 
results suggested that the potential of enhancing rice straw 
with MSGB might be more appropriate for improving rice 
straw quality than the UTRS. Moreover, MSGB-treated 
rice straw can increase the rice straw quality by controlling 
the rumen conditions, which show high rumen metabolites 
equivalent to those of the PH (Table 3).

Ruminal microorganism populations
As shown in Table 4, the mean populations of total bacteria, 
total anaerobic fungi, total protozoa, R. albus, R. flavefaciens 
and F. succinogenes were not significantly different between 
treatments (P>0.05). Nonetheless, in the case of R. albus, 
the PH represented the highest value for their population, 
while the MSGBTRS and UTRS recorded the lowest 
values (P<0.05). 
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Table 3: The impact of various roughage sources for enhancing rice straw quality in goat TMR diets on ruminal ammonia-
nitrogen and volatile fatty acid concentrations. 
Items Treatments SEM P-value Contrasts

PH RS MSGBTRS UTRS PH  vs 
Others

RS Vs MSGB-
TRS + UTRS

MSGBTRS
vs UTRS

Ruminal ammonia-nitrogen concentration, (mg/dl)
2 h 15.47 15.56 16.06 16.77 0.193 0.029 0.062 0.030 0.094
4 h 15.50b 16.38ab 17.38ab 18.83a 0.414 0.003 0.003 0.010 0.041
8 h 17.43b 17.47b 17.73b 18.62a 0.171 0.015 0.104 0.292 0.004
12 h 20.45 21.43 21.94 22.71 0.423 0.316 0.129 0.390 0.514
24 h 18.99b 19.42b 19.39b 20.50a 0.192 0.032 0.031 0.135 0.023
Mean 17.58 18.10 18.44 19.12 0.333 0.876 0.478 0.852 0.775
Total VFAs, mmol/l
1 h 97.94 91.02 90.83 94.25 0.239 0.751 0.356 0.819 0.656
4 h 100.73 108.34 98.92 103.90 0.290 0.740 0.693 0.397 0.592
8 h 127.96ab 139.27a 131.29ab 120.68b 0.247 0.028 0.548 0.012 0.057
Mean 108.88 112.88 107.01 106.28 1.488 0.449 0.965 0.126 0.866
Acetate (C2), mol/100 mol total VFAs
1 h 80.16 79.86 80.73 80.48 0.489 0.948 0.884 0.600 0.879
4 h 79.51 77.63 79.47 79.96 0.489 0.572 0.738 0.202 0.784
8 h 75.49ab 73.43b 74.76b 77.44a 0.521 0.021 0.725 0.013 0.026
Mean 78.38 76.98 78.32 79.28 0.392 0.230 0.823 0.070 0.371
Propionate (C3), mol/100 mol total VFAs
1 h 14.96 15.33 14.19 14.31 0.510 0.880 0.798 0.467 0.941
4 h 15.32 17.09 15.39 14.71 0.510 0.517 0.758 0.177 0.679
8 h 19.00ab 21.35a 19.76a 17.16b 0.547 0.020 0.619 0.011 0.033
Mean 16.43 17.930 16.45 15.40 0.397 0.150 0.841 0.043 0.307
Butyrate (C4), mol/100 mol total VFAs
1 h 4.87 4.80 5.07 5.2 0.122 0.716 0.631 0.341 0.745
4 h 5.16 5.26 5.13 5.32 0.122 0.822 0.705 0.836 0.423
8 h 5.51 5.20 5.47 5.44 0.066 0.398 0.367 0.159 0.875
Mean 5.18 5.09 5.22 5.31 0.071 0.805 0.883 0.678 0.678
C2:C3 ratio
1 h 5.36 5.33 5.82 5.66 0.22 0.878 0.688 0.522 0.833
4 h 5.26 4.54 5.37 5.44 0.24 0.613 0.825 0.211 0.926
8 h 3.99ab 3.46b 3.78b 4.51a 0.13 0.011 0.714 0.008 0.013
Mean 4.87 4.44 4.99 5.20 0.13 0.278 0.965 0.072 0.581

a,b Means with different superscripts in a row are significantly different (P<0.05). PH = Pangola hay (T1), RS = rice straw (T2), 
MSGBTRS = MSGB-treated rice straw (T3) and UTRS = 3.5% urea-treated rice straw (T4).

The essential amino acids in the MSGB act as precursors 
for VFAs and are vital for the proliferation of ruminal 
microorganisms (Kajikawa et al., 2002; Bhatia and Yang, 
2017). 

According to the other parameters, the UTRS showed 
results similar ​​to those of the MSGBTRS. Compared 
with the UTRS, improving rice straw with MSGB was an 
easier and less time-consuming process. This can simply 
be done by spraying MSGB directly onto the rice straw. 
As the results of MSGBTRS are equivalent to those of 
UTRS and PH, it is therefore an attractive alternative for 

improving rice straw quality.

The utilization of MSGBTRS as a roughage source in 
TMR diets for goats, as demonstrated in the present study, 
revealed that MSGB is cost-effective, easily accessible, and 
rich in nutritional value. It presents a promising alternative 
to traditional roughage sources such as PH and UTRS. The 
MSGBTRS offers the advantages of high crude protein 
content and improved digestibility with no adverse effects 
on rumen ecology (Padunglerk et al., 2016; Kongsil., 2017; 
Rukboon et al., 2019).
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Table 4: The influence of different roughage sources on enhancing rice straw quality in the goat TMR diet on ruminal 
microorganism populations and the predominance of cellulolytic bacteria.
Items Treatments SEM P value Contrasts

PH RS MSGB-
TRS

UTRS PH vs others RS vs MSGB-
TRS + UTRS

MSGBTRS 
vs UTRS

Total bacteria, ×108 copies/ml
1 h 10.0 1.55 1.38 1.04 0.208 0.393 0.013 0.946 0.954
4 h 2.19 1.93 1.57 5.19 0.585 0.079 0.524 0.232 0.023
Mean 6.12 1.74 1.48 3.12 1.06 0.444 0.143 0.837 0.602
Total anaerobic fungi, ×106 copies/ml
1 h 3.82 6.90 6.56 5.33 0.752 0.532 0.205 0.664 0.574
4 h 14.61 32.9 5.60 8.16 0.719 0.580 0.956 0.199 0.914
Mean 9.21 19.29 6.09 6.45 0.350 0.569 0.872 0.183 0.973
Total protozoa, ×107 copies/ml
1 h 9.93 10.23 7.87 8.13 0.994 0.828 0.652 0.440 0.936
4 h 9.59 10.23 7.42 9.54 0.697 0.574 0.763 0.356 0.332
Mean 9.78 10.23 7.65 8.86 0.812 0.747 0.684 0.388 0.643
Ruminococcus albus, ×107 copies/ml
1 h 8.96 4.90 1.98 1.27 1.359 0.167 0.051 0.289 0.837
4 h 4.35 2.72 2.94 1.78 0.611 0.581 0.239 0.520 0.903
Mean 6.66a 3.34ab 2.46b 1.99b 0.736 0.076 0.015 0.045 0.780
Ruminococcus flavefaciens, ×105 copies/ml
1 h 20.8a 7.84b 8.99b 9.55b 0.214 0.087 0.015 0.741 0.910
4 h 17.60 28.71 29.56 15.76 0.494 0.720 0.583 0.657 0.389
Mean 1.92 1.83 1.93 1.26 0.269 0.841 0.735 0.760 0.458
Fibrobactor succinogenes, ×106 copies/ml
1 h 3.09 2.66 1.35 3.52 0.436 0.353 0.600 0.825 0.120
4 h 1.91 2.43 2.65 2.64 0.345 0.884 0.479 0.845 0.989
Mean 2.38 2.43 2.00 3.08 0.248 0.630 0.143 0.837 0.602

a,bMeans with different superscripts in a row are significantly different (P<0.05). PH = Pangola hay (T1), RS = rice straw (T2), 
MSGBTRS = MSGB-treated rice straw (T3) and UTRS = 3.5% urea-treated rice straw (T4).

CONCLUSIONS AND 
RECOMMENDATIONS

The investigation into the utilization of MSGBTRS as 
a roughage source in TMR diets for goats revealed the 
effectiveness of MSGB in enhancing the protein content of 
rice straw. In addition, MSGB can increase the digestibility 
of rice straw to be comparable to the commonly used 
high-quality roughage sources like PH and UTRS. Also, 
MSGBTRS facilitated normal rumen metabolism and 
did not adversely affect rumen ecology. Consequently, the 
utilization of MSGBTRS presents a promising alternative 
as a roughage component for fattening goats in future 
practices.
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