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Introduction

The challenge of restoring images from blurriness 
is a common issue encountered when attempting 

to reconstruct images, and it remains a vibrant topic of 
exploration within the realm of image manipulation 
research. Likely sources contributing to this blurriness 
include disturbances in the atmosphere, loss of focus, 
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and the movement discrepancy between the camera 
and the subject (Du et al., 2023; Fergus et al., 2006; 
Shan et al., 2008; Welk et al., 2015).

Assuming the blurriness exhibits a universal quality 
and remains consistent across translations, the process 
of observation can be conceptualized as:

Where; g is the observed picture, f is the original image, 
* represents the convolution operator, h represents the 
camera transform function and n represents the noise 
(additive or multiplicative) (Lai et al., 2023; Shi et al., 
2015). In the frequency domain, Equation 1 can be 
reformulated as:

In the absence of noise, deblurring simplifies to 
inverse filtering as depicted by Equation 3.

From Equation 3, the restoration process can be 
inferred as an inverse problem. If the camera’s 
transform function also known as the Point Spread 
Function (PSF) is known, then the degraded image 
can easily be restored. Regrettably, in real scenarios, 
the PSF is unavailable, so the degraded image cannot 
be restored easily. Researchers aim at recovering the 
blurred images without PSF information or technically 
stated “blindly” referring to such a type of restoration 
being termed Blind Image Deblurring (BID).

Various blurs affect the image differently as follows:
Atmospheric Turbulence Blur/Gaussian Blur: In 
order to successfully eliminate atmospheric blur, 
algorithms must consider the haziness and light 
dispersion brought on by atmospheric disturbances.
Out of Focus Blur: Deblurring is the process of 
recovering details that have been lost as a result of 
incorrect focus settings or problems with lenses. 
Iterative blind deconvolution is one approach used to 
adjust to different degrees of focus loss.
Motion blur: Due to movement variances, complex 
motion blur necessitates deblurring algorithms that 
take into account the motion’s direction and intensity. 
These algorithms frequently make use of attention-
based or convolutional neural network (CNN) 
techniques.

Additive or Multiplicative Noise: n in deblurring 
equations denotes noise, which makes the restoration 
process more difficult and requires optimization 
techniques and denoising techniques to be integrated 
into deblurring algorithms.

Various techniques and restoration filters have been 
developed to address the problem of blind image 
restoration. This collection of schemes ranges from the 
frequency domain to the spatial domain, concurrent 
or separate PSF estimation methods, parametric to 
non-parametric (Almeida and Almeida, 2010; Cho 
and Lee, 2009) schemes, frequency domain to time 
domain to name a few.

The Iterative Blind Deconvolution (IBD) (Philips, 
2005; Sanghvi et al., 2022) is one such example. 
Other examples include the Maximum Likelihood 
(ML) method (Katsaggelos and Lay, 1991; Lagendijk 
et al., 1990), the Minimum Entropy (MED) method 
(Wiggins, 1978), the non-negativity and support- 
constraint recursive inverse filter (NAS-RIF) (Kundur 
and Hatzinakos, 1998) the Wavelet Deconvolution 
and Decomposition (Huang and Wang, 2017; 
Kerouh and Serir, 2015) the Simulated Annealing 
(SA) (Banham and Katsaggelos, 1997) the multi-
channel blind deconvolution (Kopriva, 2007) and 
the Maximum A-Posteriori (MAP) (Haritopoulos et 
al., 2002; Reeves and Mersereau, 1992; Whyte et al., 
2012). Recent advances in machine learning have led 
to the utilization of vision transformers, deep learning 
and image super-resolution techniques for deblurring 
as well (Ali et al., 2023; Alshammri et al., 2022; Zhang 
et al., 2000).

Computationally, wiener deblurring is not 
excessively complicated. Because it uses techniques 
like convolution and frequency domain analysis, 
it is appropriate for processing tasks that call for 
a reasonable amount of speed. Richardson-Lucy 
Deblurring, on the other hand, presents greater 
difficulties for computers. It uses an iterative process 
based on conditional probability; thus, it will take 
several tries to get reliable results. The computing 
effort is greatly increased by its repetitive nature. The 
complexity range of Total Variation (TV) Deblurring 
is moderate to high. It adds some complexity by 
using space-time minimization and an Augmented 
Lagrangian approach. Although it increases flexibility, 
the regularization parameter may decrease computing 
efficiency.
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Zhang et al. (2000) and Chi et al. (2019) introduce a 
novel method for blind picture deblurring that utilizes 
Convolutional Neural Networks (CNNs). The study 
conducted by Li and Wang on attention-based blind 
motion deblurring highlights the effectiveness of 
attention processes in improving certain picture areas. 
This is especially useful when dealing with intricate 
motion blur patterns (Li et al., 2023). The optimization 
strategies to improve blind picture restoration filters 
are introduced by Chen et al.’s recent work on adaptive 
Wiener deblurring, which shows promising results in 
a variety of datasets (Chen et al., 2015).

This research work focuses on concerns including 
the requirement for human parameter tweaking in 
restoration filters, possible problems with different 
deblurring methods currently in use, and attaining 
high-quality outcomes for photos that are blurry both 
naturally and intentionally. This study introduces an 
innovative strategy to diminish the necessity for 
adjusting filter parameters through the utilization 
of the image amalgamation method showcased in 
section 3. The novel amalgamated refinement filtering 
strategy is outlined in section 4. The experimental 
configuration is detailed in section 5, showcasing the 
simulated outcomes for different image datasets. This 
encompasses the outcomes of rectifying blurriness 
for both fabricated and authentic indistinct images. 
Section 5 also provides discourse and evaluation, 
whereas Section 6 delivers final remarks. Section 2, on 
the other hand, outlines the challenge of fine-tuning 
the restoration filters.

Materials and Methods

Restoration filters such as Wiener filtering (Salehi et 
al., 2020), Richardson-Lucy (Braxmaier, 2004; Fish 
et al., 1995), regularization (Sa and Majhi, 2011), and 
Total Variation (TV) (Rudin and Osher, 1994) depend 
upon manual setting of their parameters to generate 
a deblurred image. An estimate of the blurring PSF 
is input to the filters, the number of iterations or 
Signal-to-Noise Ratio (SNR) is set for the filter. The 
values of the iterations, the SNR or the smoothening 
parameter is set to produce the deblurred image with 
reduced ringing artefacts or speckles.

For the Wiener Filter given by Equation 4, the effect 
of the Noise-to-Signal (NSR) term, depicted by K, on 
the deblurred image is very significant.

Here, |H|2 is the power spectrum of the blurring 
kernel, and Sn and Sf present the noise power and 
original image power, respectively. Within the context 
of Wiener filtering, achieving the most effective 
outcome involves adapting the Noise-to-Signal Ratio 
(NSR) element, denoted as K, for optimization. When 
K assumes a diminutive value, the resultant image 
exhibits sharpness but is prone to substantial noise. 
Conversely, if K takes on a larger value approaching 1, 
the image assumes a smoother appearance; however, 
the residual blurriness persists.

The Richardson-Lucy algorithm is an IBD scheme 
based on conditional probability. Mathematically, it 
can be expressed as follows:

In Equation 6, F shows the original image (the 
image that is to be restored), G is the degraded image 
(observed image), and k is the number of iterations. 
P(F) and P (G) representing the likelihoods of the 
initial image and the obscured image, correspondingly. 
The quantity of iterations can result in an amplification 
of noise within the rejuvenated image. Therefore, 
the variable k is adjusted to achieve the ideal count 
of iterations, thereby yielding the most optimal 
revitalized image.

TV algorithm is based on the Augmented Lagrangian 
(AL) method, in which AL is extended to space-
time minimization. TV regularization functions are 
explored in space-time minimization.

This is called TV/L1 minimization, here H is the PSF, 
g is the degradation image, and µ is the regularization 
parameter. TV-norm ||f||TV is the anisotropic TV 
norm and can be expressed as:

In this context, Dx, Dy, and Dt stand for the 
progressive finite-difference operators along the 
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horizontal, vertical, and time-related orientations. For 
TV deconvolution using MATLAB, the designated 
function is deconvtv (g, H, m, opts). Within this TV 
operation, m assumes the role of a regularization factor, 
intertwining the compromise between the Least 
Square Error (LSE) and the Television (TV) penalty. 
Larger values of m lean towards generating crisper 
outcomes, albeit with the drawback of potential noise 
amplification. On the contrary, smaller m values yield 
less noisy results, but the image may incur a smoother 
appearance. Determining the optimal m requires 
resolution during the minimization process (Chan et 
al., 2011; Lienhard et al., 2022).

To optimize the output quality, it’s imperative 
to manually fine-tune the parameters for these 
rejuvenation techniques. This entails assessing the 
interim deblurred output visually, followed by the 
appropriate modification of filter parameters. This 
procedure becomes even more intricate when the 
pursuit of an ideal parameter value is factored in, 
adding an extra layer of complexity.

As for the Wiener filter, which does the deblurring 
utilising four different Noise-to-Signal Ratio (NSR) 
values, the following sections will discuss the rationale 
for selecting these NSR values and elucidate their 
significance in achieving the best possible deblurring 
outcomes. Similarly, for the Richardson-Lucy method, 
for which iterations are very important, a thorough 
analysis of the rationale for the chosen iteration 
numbers will be presented. This additional explanation 
aims to promote transparency and methodological 
soundness in the restoration technique by giving 
readers a deeper knowledge of the decision-making 
process involved in parameter selection.

Within the scope of this investigation, image fusion 
emerges as a means to alleviate this workload and 
introduce automation into the deblurring process. 
The research employs the Multi-Scale Transform and 
Sparse Representation (MSTSR) fusion approach, 
a methodology expounded upon in the subsequent 
section.

Multi-scale transforms sparse representation 
(MSTSR) image fusion

The method of image fusion pertains to the 
amalgamation of two or more distinct images into a 
solitary composition with the aim of crafting a superior 

visual outcome. Within this current research draft, 
the Multi-Scale Transform Sparse Representation 
(MSTSR) methodology for image fusion takes 
center stage. This approach draws its foundation 
from the principles of Sparse Representation (SR) 
and Multi-Scale Transform (MST). In the MSTSR 
technique, the input imagery is systematically 
disassembled into low-frequency and high-frequency 
components through the application of a specified 
MST mechanism. Subsequently, the low-frequency 
components of the input images are seamlessly 
integrated, mirroring a similar process for the high-
frequency bands. As a culminating step, the inverse 
Multi-Scale Transform is employed to meticulously 
rebuild the ultimate fused image by combining the 
modified low-frequency and high-frequency bands.

This process is illustrated in Figure 1.

Figure 1: A presentation of the MST fusion algorithm 
showcasing the merging of two images.

This scheme demonstrates robustness in terms of 
providing high-quality fused images, particularly 
for multi-modal images. In this BID research, the 
multi-modal MSTSR scheme is able to merge these 
deblurred instances effectively by utilizing MST and 
SR approach of Liu et al. (2015) compared to other 
schemes which only use MST or SR approach. It is 
pertinent to mention that high-quality fusion results 
of MSTSR depend on the transform utilized by MST. 
The performance of the MSTSR fusion method 
may vary depending on the composition of the 
input photos. Pictures with rich details, complicated 
architecture, or erratic patterns could be difficult for 
the fusion algorithm to process. In these situations, 
the algorithm may find it difficult to integrate the 
high-frequency and low-frequency components, 
which could result in less-than-ideal outcomes.

The research work capitalizes on the merits of 
Multi-Scale Transform and Sparse Representation 
(MSTSR) image fusion, chosen for its competence in 
yielding a superior amalgamated image.
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The use of Multi-Scale Transform Sparse 
Representation (MSTSR) for picture restoration is 
justified by its special advantages in blind deblurring 
scenarios. MSTSR excels in multi-scale information 
retention, offering a comprehensive representation 
of small elements that other fusion approaches 
sometimes overlook. Its ability to express sparsely 
makes it capable of accurately modeling complex 
patterns by enabling it to handle intricate details in 
hazy images with ease. The effectiveness of MSTSR 
has been demonstrated in earlier studies, and its 
adaptability to multi-modal images and effective 
integration of low- and high-frequency components 
further bolster its usefulness. In conclusion, MSTSR 
offers a comprehensive and proven approach to 
address the challenges associated with blind picture 
deblurring, thanks to its unique benefits.

In the subsequent section, an introduction is made 
to the MSTSR fusion technique adopted within this 
research endeavor. The foundations of MSTSR rest 
upon the principles of Sparse Representation (SR) 
and Multi-Scale Transform (MST). A brief overview 
of these two methodologies precedes the elucidation 
of the MSTSR algorithm.

Sparse representation (SR)
The fundamental assumption of SR can be stated 
as follows: “A signal x ∈ Rn can be approximately 
represented by a linear combination of a “few” atoms 
from a redundant dictionary D ∈ Rn*m (n < m), where 
n is the signal dimension, and m is the dictionary 
size. That is, the signal x can be expressed as x ≈ Dα, 
where α∈Rm is the unknown sparse coefficient vector. 
As the dictionary is over-complete, there are plentiful 
feasible explanations for this under-determined 
system of equations. The goal of SR is to compute 
the sparsest α which comprises the scarcest non-zero 
entries among all feasible solutions (Liu et al., 2015).

Mathematically, the sparset α can be obtained with 
the following sparse model:

Here ε > 0 is an error tolerance and ||a||0 denotes the 
l0-norm which counts the number of non-zero entries.

Multi-scale transform (MST)
The MST-based fusion methods consist of 
three steps: Decomposition, transformation, and 

reconstruction (Li et al., 2023). Firstly, the source 
images are decomposed into a multi-scale transform 
domain. Then the transformed coefficients are merged 
using a given fusion rule. Finally, the fused image 
is reconstructed by performing the corresponding 
inverse transform over the merged coefficients.

The MST-SR based image fusion approach entails 
the following four processes (Liu et al., 2015).

Step 1: MST decomposition
The image is split into low-pass and high-pass bands 
by utilizing a specific MST on two or more input 
images.

Step 2: Low-pass fusion
A sliding window technique is used to divide the 
low-pass bands into patches of size. Then these 
patches are rearranged into column vectors, and the 
mean values for each vector are normalized to zero 
to get vector. Using Orthogonal Matching Pursuit 
(OMP) algorithm, calculate the sparse coefficient 
vectors. Merge the sparse coefficient vectors (Mallat 
and Zhang, 1993) to get the final sparse vector by 
the popular “max-L1” rule. Repeat the above process 
for all the images’ patches to get all the fused vectors, 
reshape them into a pitch, and place them into their 
original position. As patches are overlapped, each 
pixel’s value in the final fused image is averaged over 
its accumulation times.

Step 3: High-pass fusion
In this step, the high-pass bands of the images are 
fused together with the famous “-max-absolute” rule 
using the absolute value of each coefficient as the 
activity level measurement. Then, apply the consistency 
verification scheme to ensure that a fused coefficient 
does not originate from a different source image from 
most of its neighbours. This can be implemented via a 
small majority filter.

Step 4: MST reconstruction 
The final fused image fF is reconstructed by taking 
inverse MST over the final fused lower-pass bands 
and high-pass bands (Liu et al., 2015).

The fused restoration filtering approach for BID is 
presented in the section that follows.

Proposed image fusion based restoration filtering
Let τ represents the fusion algorithm, (F ̂n) represents 
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the set of deblurred image estimates for the deblurred 
instances, filter parameters values given by R, then the 
fused deblurred image f ̂ can be given by Equation 10 
as:

In the case of Wiener filter, R=[1e-02,8e-03,6e-03,4e-04] 
represent the four NSR values. For the Richardson-
Lucy restoration, R= [8, 9, 10, 11] depict the four 
different iterations while R=[2, 3, 4, 5] represent the 
four regularization values for the TV deconvolution 
filter. The blurred image is deblurred four times for 
the different values of R for the corresponding filter. 
Then the recovered images are fused together by 
using MSTSR fusion technique to get final resultant 
recovered image. Through image fusion the recovered 
image achieves good perceptual as well as objective 
quality. The proposed algorithm is based on the fusion 
of various deblurring outputs in order to generate a 
high quality deblurred image independent of the 
manual tuning of classical restoration filters.

Figure 2 shows the overview of the fused restoration 
filter algorithm. The blurred image g is provided to 
the restoration filter, which estimates the deblurred 
images [f ̂1,f ̂2.......f ̂n] using the multiple parameter 
values given by the set R. These multiple estimates 
are then joined together using the MSTSR fusion 
algorithm to generate the single high-quality 
deblurred image.

Figure 2: An overview of the proposed MSTSR based 
fused restoration filtering.

Figure 3 shows the process of deblurring through 
fused restoration for the Lena image. Figure 3a shows 
the original image, while its corresponding blurred 
image is given in Figure 3b. Figure 3c-f are deblurred 

estimates using the Wiener filter for NSR values 1e-

03, 8e-03, 6e-03, and 4e-04, respectively. A smaller NSR 
produces a sharper image as given in Figure 3f but at 
the cost of higher deblurring noise. High NSR values 
produce smooth images with relatively low noise but 
with a fair amount of residual blur still inherent in 
the deblurred image. Combining all four images of 
Figure 3c-f through the MSTSR algorithm produces 
a fused image containing sharp details as well as 
reduced noise. Figure 2a was blurred using a Gaussian 
blur of variance, σ2= 1.5.

Figure 3: MSTSR fusion deblurring (a) Original 
Image (b) Gaussian blurred with σ2 =1.5 (c)-(f ) Wiener 
deblurred images with NSR = 1e-03, 8e-03, 6e-03, and 4e-04, 
respectively. (g) Fusion-based deblurred image fused from 
the resulting images of (c)-(f ).

Figure 4a and b show the deblurring quality computed 
by BRISQUE (Blind/Reference-less Image Spatial 
Quality Evaluator) (Mittal et al., 2012) and PSNR 
respectively for the deblurred image using four NSR 
values. Since the true variance is unknown, deblurring 
estimates the value over a range of variance σ2 from 
0.1 to 5. BRISQUE computes image quality scores on 
a scale of 0 to 100. A smaller score of the BRISQUE 
measure depicts a high-quality image. PSNR, on the 
other hand, is measured in decibels (dB) and a high 
value depicts a high-quality image. It can be seen that 
the best estimates of variance are produced for the 
fused images. The NSR score of 4e-03 relates well with 
the BRISQUE scores values. But the fused image as 
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seen in Figure 4f has better quality as compared to 
Figure 4e.

Figure 4: The BRISQUE and PSNR values depicting 
the improved image quality for the fusion based image 
restoration.

Figure 4b shows the PSNR values which confirm the 
effectiveness of the proposed fusion-based restoration 
filter. In the case of real blurred only BRISQUE scores 
were calculated as we have no reference image. PSNR 
is a full-reference quality measure and thus cannot be 
used in blind deconvolution but BRISQUE being a 
reference-less image quality measure can be utilized 
for blur estimation in blind deconvolution.

Results and Discussion

The simulations in the case of artificially blurred 
images included images blurred using the f special 
function in MATLAB. Simulations included the 
restoration of images under Gaussian, motion, and 
out-of-focus blur. Real blurred images captured by the 
first author were also used. To gauge the quality of the 
restoration techniques, the full reference PSNR and 
blind image quality measure BRISQUE have been 
utilized. The following section presents and analyses 
the results for artificially blurred images using fused 
restoration.

Deblurring artificially blurred images
Figure 5 shows the deblurring results for the Monarch 
image under the influence of Gaussian blur. Figure 4a 
shows the blurred image, while Figure 5b-d are the 
fused restorations using Wiener, Richardson-Lucy, 
and TV filtering, respectively. The fused Wiener 
filter reveals the best result as compared to the fused 
Richardson-Lucy and fused TV filter. 

Figure 5: (a) Gaussian blurred image. (b) Fused Wiener 
restoration (c) Fused Richardson-Lucy restoration (d) 
Fused TV restoration.

Figure 6: (a) Motion blurred image. (b) Fused Wiener 
restoration (c) Fused Richardson-Lucy restoration (d) 
Fused TV restoration.

The fused Richardson-Lucy results inherit residual 
blur, while the TV filter produces a water-color effect. 
Results in Table 1 show a high value of PSNR and a 
low value of BRISQUE for the fused Wiener filter 
as compared to the other filters; thus, confirming the 
efficiency of the Wiener filter in terms of producing 
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Table 1: PSNR and BRISQUE values for the fused restoration filters in the case of artificial Gaussian, motion and 
out-of-focus blur.
Blur type Fused / Non-fused 

restoration
Weiner Richardson lucy Total variation

PSNR (dB) BRISQUE PSNR (dB) BRISQUE PSNR (dB) BRISQUE
Gaussian 
blur

w1 29.9 34.8 27 38.7 30.4 39.4
w2 30.1 34.2 27 37.9 30.4 38.9
w3 30.3 33.4 27 37.5 30.4 39.3
w4 31.4 32.5 27 37.5 30.4 39.8
fused 31.2 32.5 27 36.6 30.4 39.1

Motion blur w1 30.9 42.4 29.7 46.2 30.5 32.9
w2 31 41.5 29.7 44.8 30.5 34.3
w3 31.1 40 29.7 43.3 30.5 33.1
w4 31.4 38.6 29.7 42.5 30.5 34
fused 31.2 38.8 29.7 43.3 30.4 33.3

Out of focus 
Blur

w1 30 48.8 28.7 53.7 29.8 43.8
w2 30.1 48.3 28.7 53.7 29.8 44.2
w3 30.2 47 28.7 53.5 29.8 44.6
w4 30.8 45.1 28.7 53 29.8 43.7
fused 30.7 45.5 28.7 53.1 29.8 43.7

a high-quality image. The deblurred images using 
Wiener filter are 8 percent better as compared to the 
Richardson-Lucy filter and 3 percent more effective 
in comparison to TV deblurring.

Results in Figure 6 and 7 are achieved in the case of 
motion and out-of-focus deblurring. In Figure 6b and 
7b, the results of fused Wiener filter are high quality 
as compared to the other restoration filters. PSNR 
and BRISQUE values corroborate this fact.

Figure 7: (a) Out-of-focus blurred image. (b) Fused 
Wiener restoration (c) Fused Richardson-Lucy restoration 
(d) Fused TV restoration.

Deblurring real blurred images
Figure 8 shows the deblurring results in the case of 
real motion blur. This image was extracted from a 
video frame recorded under the camera by moving a 
label. The digits in the top level appear to recover well 
particularly in the case of the fused Richardson-Lucy 
filter as compared to the fused Wiener and fused TV 
filter. However, the small size digits at the bottom of

Figure 8: (a) Real blurred image. (b) Fused Wiener 
restoration (c) Fused Richardson-Lucy restoration (d) 
Fused TV restoration.
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the image do not seem to recover using any of the 
fused filters. A possible reason could be that the text 
size is too small and the PSF is large which highly 
corrupts the text beyond recovery. In the case of real 
images, only BRISQUE scores can be calculated as the 
reference pristine image is not available. Table 2 shows 
the BRISQUE scores for Figures 8, 9 and 10. A low 
score is achieved in the case of the Richardson-Lucy 
filter depicting a high-quality image. w1, w2, w3, and w4 
are the four deblurred images by trying four different 
values for the parameter of the restoration filters.

Figure 9: (a) Real blurred image. (b) Fused Wiener 
restoration (c) Fused Richardson-Lucy restoration (d) 
Fused TV restoration.

Figure 10: (a) Real blurred image. (b) Fused Wiener 
restoration (c) Fused Richardson-Lucy restoration (d) 
Fused TV restoration.

Table 2: BRISQUE values for the fused restoration 
filters in the case of real blurred image.
Image 
No.

Fusion 
data

Weiner Richardson 
lucy

Total 
variation

Fig. 8 w1, w2 40.69, 34.80 40.69, 23.27 40.69, 54.74
w3, w4 33.72, 32.93 21.18, 20.53 54.16, 53.28
Fused 32.19 19.54 53.82

Fig. 9 w1, w2 49.07, 37.90 49.07, 25.84 49.07, 24.78
w3, w4 37.70, 35.24 25.21, 21.93 29.32, 27.06
Fused 34.87 22.91 26.52

Fig. 10 w1, w2 49.67, 48.26 49.67, 50.09 49.67, 55.38
w3, w4 45.80, 46.76 48.09, 47.96 50.50, 49.87
Fused 46.92 45.69 49.06

Conclusions and Recommendations

In this research work, image fusion was utilized to 
produce high-quality images in BID. The MSTSR 
fusion embedded in the restoration filters significantly 
increased the performance of the filtering in terms 
of the deblurred image quality. Among the Wiener 
Filter, Richardson Lucy, and TV deconvolution, the 
fused restoration demonstrated improved quality in 
terms of PSNR and BRISQUE values. This research 
has successfully reduced the hurdle of trying different 
parameters for blind deblurring filters. Results on 
artificial and real blurred images demonstrate the 
efficacy of utilizing image fusion for blind image 
restoration. The findings suggest the effectiveness of 
the image fusion process in aiding the blind deblurring 
process. The Wiener filter produces the best result 
for artificially blurred images, while the Richardson-
Lucy filter succeeds in the case of real blurred images. 
Fusion methods, in general, may introduce artifacts 
in the deblurred image, especially when combining 
information from multiple sources. The MSTSR 
approach might be prone to generating artifacts, such 
as halos or ringing effects, particularly in regions with 
abrupt intensity changes or high-frequency details. 
This is envisioned to be addressed in the culminating 
research work.

Novelty Statement

This research work purposefully employs image fu-
sion to eliminate the need for adjusting parameters 
for image deblurring filters
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