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INTRODUCTION

Sheep raising is one of the main activities of Peruvian 
livestock producers, mainly in the Puno region, where 

the largest population of sheep is found. Around 25.48% 
of sheep in Peru are located in the Puno region and are 
mainly raised by smallholders in extensive systems, grazing 
on natural grasslands (MIDAGRI, 2021). The decline in 
meat and wool prices as a result of inadequate technical 
support, migration from rural to urban areas, limited use of 
technology and inefficient use of natural rangelands is con-
tinuing. An efficient strategy for managing herds which 
includes consistent assessment of production traits, like as-
sessing body weight and composition, could aid struggling 

producers.

Body weight of farm animals is the most essential trait 
in the herd’s productive efficiency, mainly for meat pro-
duction. This trait allows producers to assess the general 
condition of animal, can be used as a basis for selection 
in animal improvement programs, used to formulate bal-
anced diets, health management, and to decide when the 
fattening period is complete, among others (Kunene et al., 
2009; Çakmakçı, 2022). Therefor body weight must be es-
timated with high accuracy, but can be difficult without 
suitable equipment, which can be expensive and difficult 
to transport.
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Fortunately, it has been published that there is an important 
relationship between live weight and body measurements 
of sheep (Canaza-Cayo et al., 2017, 2021), goats (Dakh-
lan et al., 2020), and cows (Azis et al., 2023). Therefore, 
various statistical regression models have been suggested 
to estimate live weight based on measurements of body di-
mension (Dakhlan et al., 2020; Canaza-Cayo et al., 2017, 
2021; Azis et al., 2023). Nevertheless, when there are many 
predictor variables, multicollinearity arises among them, 
resulting in the problem of overfitting (Ye et al., 2020). In 
general, multiple linear regression (MLR) analysis is wide-
ly used to estimate the body weight of animals based on 
biometric measures.

The MLR using stepwise selection method, also known 
as stepwise regression (SR) is a statistical technique of 
choosing variables of interest from several other variables 
in the regression model. As the initial step, whole explan-
atory variables incorporated in linear equation, then, in 
each subsequent step, the least significant variable with the 
highest p-value eliminated (Li et al., 2022). However, SR 
can generate unreliable parameter estimates in situations 
where the number of predictors is greater. Alternatively, 
ridge regression (RR) analysis is a helpful tool to overcome 
multicollinearity due to strong bivariate-correlations be-
tween independent variables. Insignificant variables can 
be reduced so their coefficients approach zero through an 
added constraint. The constant ‘k’ is established using a var-
iance inflation factor and a ridge trace (McDonald, 2009).
To the best of our knowledge, little research has been re-
ported about predicting body weight via Ridge Regression 
in Corriedale sheep. Thus, the purpose of this study was to 
predict body weights of Corriedale ewes from various body 
measurements using stepwise and ridge regression models.

MATERIALS AND METHODS

study aRea and data ColleCtion 
Records of 100 female Corriedale sheep aged 1.5 to 2 years 
were utilized in the study. The animals were housed at the 
Illpa Experimental Center from National University of 
Altiplano, located in the Puno Department of Peru. Body 
weight (BW) and body measurements (BM) including, 
body length (BL), abdominal perimeter (AP), rump height 
(RH), wither height (WH), thoracic perimeter (TP), loin 
width (LWi), tail perimeter (TPe), hip width (HW), fore-
shank width (FSW), tail width (TW), shoulder width 
(SW), forelimb length (FL), fore-shank length (FSL) and 
fore-shank perimeter (FSP) were recorded. BW was ob-
tained using a weighing scale in kg, while a wood ruler and 
a centimeter-long measuring tape were used to measure 
the BM.

 

statistiCal analysis
(MLR) analysis is a statistical method used for mode-
ling the relationships between variables, including both 
response and explanatory variables (Montgomery et al., 
2012). A MLR in matrix formula may be written as:

                                                [1]
Where y is represent a (n x 1) column vector of records as-
sociated with the response variable, X is a (nxp) incidence 

matrix of records of the explanatory variables,  is an (px1) 
unknown regression parameters column vector, and ε is an 
(nx1) vector of random errors and distributed according to 
the normal distribution with means vector equal to (nx1) 

zero vector and identity variances matrix equal to , 

where  denotes the n x n identity matrix (Montgomery 

et al., 2021). The ordinary least squares (OLS)  estima-
tor of the parameters is obtained by applying equation 2 
(Rencher and Schaalje, 2008): 

                                 [2]
In the present research, BW was the response variable, 
while the ’s parameters for BM were utilized as predic-
tor variables. To address the problem of multicollinearity 
between the explanatory variables, this study utilized step-
wise regression (SR) and ridge regression (RR) analysis.

stepWise RegRession analysis
SR is a method of selecting a subset of predictor varia-
bles for a regression model, from a wide range of potential 
explanatory variables. In the first step, all predictors were 
included in the model. Each step involved removing the 
least significant predictor with the highest p-value. This 
method includes three main variations: forward selection, 
backward elimination, and stepwise. In forward selection, 
the model begins with no predictors and consecutively 
adds significant ones until meeting a statistical stopping 
criteria. In backward elimination, the model begins with all 
potential predictors and gradually removes those that are 
non-significant until meeting a statistical stopping criteria. 
Stepwise regression (SR) blends both approaches, adding 
and removing predictors as it builds the model (Harrell, 
2001). The SR analysis was performed using the MASS 
package of software R (R Core Team, 2023). 

Ridge RegRession analysis
Ridge regression (RR) is a statistical technique used to ad-
dress multicollinearity and prevent issues related to small 
sample sizes and a high number of predictor variables. 
When multicollinearity is present, OLS estimates remain 
unbiased, but their variances are high, which can cause 
them to deviate significantly from the true value. Ridge re-
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gression introduces a degree of bias to the regression esti-
mates, thereby reducing standard errors. The expectation is 
that this will lead to more reliable estimates overall (Hastie 
et al., 2001).

The ridge estimator  is shown by

                                   [3]       
where k is ridge parameter determined as a positive num-
ber and I denote an identity matrix. The RR analysis was 
performed using the lmridge package of software R (R 
Core Team, 2023).

assessment oF pRediCtion aCCuRaCy
Different Goodness-of-fit metrics were used to evaluate 
the performance of the models used to predict the ewes’ 
body weight. Among them, the coefficient of determina-
tion (R2), Pearson coefficient of correlation (r), root mean 
square error (RMSE), means square error (MSE), mean 
absolute deviation (MAD), mean absolute error (MAE) 
and mean absolute percentage error (MAPE). The mod-
el with the least RMSE, MSE, MAD, MAE and MAPE 
values and high R2 values in training and testing datasets 
was selected as the best model to predict the BW of Cor-
riedale ewes. The goodness-of-fit metrics analysis was per-
formed using the Metrics package of software R (R Core 
Team, 2023).

RESULTS AND DISCUSSION

Table 1 shows descriptive statistics for body weight and 
linear body measurements of Corriedale ewes. BW var-
ied between 22 and 66 kg, with a mean of 34.39 kg and 
a standard deviation of 4.68 kg. The coefficient of varia-
tion for body measurements ranged from 4.35% (RH) to 
18.08% (TPe).

peaRson CoRRelation BetWeen Body 
measuRements and BW
Figure 1 presents Pearson’s correlation coefficients among 
the body measurements, including body weights (BW), 
across the entire dataset. Overall, a high positive correla-
tion (P < 0.05) was observed between BW and AP (0.78), 
while a moderate positive correlation (P < 0.05) was found 
between BW and TP (0.64), HW (0.50), LWi (0.50), SW 
(0.51), and BL (0.52). There was a weak positive correla-
tion among BW and other body measurements (≤ 0.48, P 
> 0.05). Çakmakçı (2022) observed comparable patterns 
in Norduz ewes and discovered a high correlation between 
BW and TP (0.87). Canaza-Cayo et al. (2021) in Cor-
riedale ewes and Faraz et al. (2023) in Kajli sheep also re-
ported higher correlations between BW and AP. 

Figure 1: Correlation matrix in entire data set.

The results in the present study also showed that there was 
a significant and very high relationship (P<0.05) between 
WH and RH (0.93) while a high correlation between TP 
and AP (0.77), and between TW and TPe. A positive and 
moderate correlation (P<0.05) between TPe and LWi 
(0.64) and between HW and SW (0.61) was also observed. 
The other body measurements showed low (P<0.05) to 
very low magnitude (P>0.05) correlations, with values 
ranging from 0.23 to 0.49. Little research has been report-
ed on Pearson’s correlations among different body meas-
urements in sheep. The results of the present study were 
consistent with those published for the Corriedale, Kajli, 
and Santa Inês breeds by Canaza-Cayo et al. (2021), Faraz 
et al. (2023), and Gurgel et al. (2021), respectively.  

stepWise RegRession
The stepwise regression analysis results are presented in 
Table 2. Results indicated that the AP, FSL, HW, LWi 
and BL were significant predictor variables included in 
the model with an R2 = 0.76 to predict body weight of 
Corriedale ewes. In addition, according to VIF, no mul-
ti-collinearity was found between the predictor variables 
(VIF>10, Miles, 2014). The current study’s findings align 
with those published by Canaza-Cayo et al. (2021). The 
body weight of the Corriedale ewes was predicted using 
equation 4 (next paragraph), established by the stepwise 
regression analysis; allowing us to compare the predicted 
body weight with the actual body weight at a 95% confi-
dence interval (Figure 2). 
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Table 1: Descriptive statistics of body weight (kg) and body measurements (cm) of Corriedale ewes.
Traits Mean Median SD Min Max CV(%)
BW 34.39 34.0 4.68 22 46 13.62
WH 59.80 60.0 2.68 50 66 4.49
RH 61.08 61.0 2.66 52 68 4.35
TP 82.55 81.0 4.4 72 99 5.33
AP 96.96 97.0 5.57 80 112 5.74
FSL 20.41 20.0 1.25 17 25.5 6.14
FSW 2.51 2.5 0.34 2 3 13.75
FSP 8.43 8.5 0.59 6 10 7.05
TW 3.17 3.0 0.52 2.5 5 16.36
TPe 7.45 7.0 1.35 6 17 18.08
HW 19.38 20.0 1.6 11 23 8.24
LWi 12.46 12.0 1.01 10 18 8.12
SW 19.33 19.5 1.44 15 23 7.46
FL 37.06 37.0 2.41 27 42 6.51
BL 95.48 96.0 4.28 83 104 4.48

SD: standard deviation; CV: coefficients of variation; BW: body weight; WH: wither height; RH: rump height; TP: thoracic 
perimeter; AP: abdominal perimeter; FSL: fore-shank length; FSW: fore-shank width; FSP: fore-shank perimeter; TW: tail width; 
TPe: tail perimeter; HW: hip width; LWi: loin width; SW: shoulder width; FL: forelimb length and BL: body length.

Table 2: Estimated stepwise regression parameters, significance level, tolerance and VIF values obtained from training 
dataset.
Variable B SE t Pr(>|t|) Sig VIF
Intercept -59.20 7.21 -8.21 0.00 ***
AP 0.37 0.07 5.23 0.00 *** 1.93
FSL 0.58 0.24 2.42 0.02 * 1.27
HW 0.60 0.23 2.61 0.01 * 1.68
LWi 0.83 0.32 2.55 0.01 * 1.46
BL 0.25 0.07 3.44 0.00 ** 1.26

AP: abdominal perimeter; FSL: fore-shank length; HW: hip width; LWi: loin width; BL: body length, SE: standard error. VIF: 
variance inflation factor, B: regression parameter, t: t-test statistics. Significance codes:  *** 0.001 ** 0.01 * 0.05

Table 3: Goodness-of-fits metrics for different K Ridge estimators for training and testing dataset
K Training dataset Testing dataset

MSE PRESS R2 AIC MSE PRESS R2 AIC
0.00 411.19 689.67 0.79 131.36 274.30 384.05 0.86 61.94
0.25 215.06 527.72 0.66 126.49 83.72 232.02 0.70 55.89
0.50 264.82 521.86 0.58 127.94 93.33 233.42 0.59 57.32
0.75 299.03 529.28 0.52 130.13 107.71 245.09 0.51 59.53
1.00 324.44 541.90 0.47 132.58 120.90 259.42 0.45 61.79
1.25 344.63 557.18 0.43 135.10 132.49 274.43 0.40 63.93
1.50 361.41 573.92 0.39 137.60 142.71 289.37 0.36 65.91
1.75 375.79 591.43 0.36 140.03 151.79 303.87 0.32 67.72
2.00 388.40 609.29 0.33 142.36 159.95 317.79 0.29 69.37

MSE: Mean square error; PRESS: Predicted residual error sum of squares; R2: coefficient of determination, AIC:  A kaike information 
criterion
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Table 4: Ridge regression parameters, standard errors and VIF values for training data
Variable B B* SE* t* Pr(>|t|) Sig VIF*

Intercept -61.40 -2656.61 385.66    -6.89 0.00 ***
WH 0.05 1.03 1.75 0.59 0.56 0.50
RH 0.17 3.73 1.68 2.22 0.03 * 0.47
TP 0.08 2.90 2.15 1.35 0.18 0.76
AP 0.25 11.66 2.17 5.38 0.00 *** 0.77
FSL 0.50 5.61 2.09 2.69 0.01 ** 0.71
FSW -0.57 -1.56 2.13 -0.73 0.47 0.75
FSP 0.57 3.00 2.08 1.44 0.16 0.71
TW 0.47 2.17 1.93 1.13 0.26 0.61
TPe 0.01 0.10 1.74 0.06 0.96 0.50
HW 0.39 5.29 2.07 2.55 0.01 * 0.71
LWi 0.51 4.50 2.09 2.15 0.04 * 0.72
SW 0.26 3.00 2.13 1.41 0.16 0.74
FL -0.03 -0.70 2.07 -0.34 0.74 0.71
BL 0.20 7.39 2.10 3.52 0.00 *** 0.73

WH: wither height; RH: rump height; TP: thoracic perimeter; AP: abdominal perimeter; FSL: fore-shank length; FSW: fore-shank 
width; FSP: fore-shank perimeter; TW: tail width; TPe: tail perimeter; HW: hip width; LWi: loin width; SW: shoulder width; FL: 
forelimb length and BL: body length, SE*: standardized standard error. VIF*: standardized variance inflation factor, B: regression 
parameter, B*: standardized regression parameter t*: standardized t-test statistics.
Significance codes:  *** 0.001 ** 0.01 * 0.05

Table 5: Goodness-of-fit criteria for comparing the model performances.
Criteria Stepwise regression model Ridge Regression model

Training dataset Test dataset Training dataset Test dataset
RMSE 2,277 2,358 2,251 2,609
MSE 5.186 5.560 5.069 6.804
MAD 1,788 1,947 1,810 2,185
MAE 1,788 1,947 1,810 2,185
MAPE 5,319 5,583 5,342 6,156
r 0,873 0,865 0,879 0,842
R2 0,842 0,730 0,768 0,669

R2: coefficient of determination, r: Pearson coefficient of correlation, RMSE: root mean square error, MSE: means square error, 
MAD: mean absolute deviation, MAE mean absolute error, MAPE: mean absolute percentage error.

Figure 2: Actual body weight (kg) and predicted body 
weight (kg) by Stepwise regression model for training (a) 
and test dataset (b).

In the stepwise regression, the variables WH, RH, TP, 
FSW, FSP, TW, TPe, SW, FL and RHI were evaluated 
and eliminated from the model after evaluating their con-
tributions. The final model (Table 3) identified after seven 
steps had an R² of 0.76, AIC of  314.4 and RMSE of 2.28 
kg and resulted in equation 4:

                                   [4]

Ridge RegRession
The results of Goodness-of-fit metrics for different K 
Ridge estimators on both the training and testing datasets 
are given in Table 3. The best K value was 0.25 attributa-
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ble to the smallest MSE, PRESS and AIC values and the 
highest R2 value for training and testing dataset. It shows 
that at K = 0.25 stability was achieved in all the body meas-
urements; having eliminated collinearity, as demonstrated 
by the ridge trace plot (Figure 3).

Figure 3: Ridge trace plot of estimated  parameters 
against the k value obtained by Eq. (3) for training data set 
(a) and testing dataset (b).

The findings of Ridge regression analysis are given in Ta-
ble 4. Results indicate that the AP, FSL, HW, LWi and 
BL were the significant predictor variables included in the 
model with R2 = 0.76 to predict body weight of Corriedale 
ewes. In addition, according to VIF, no multi-collinearity 
was found between the predictor variables (VIF>10, Miles, 
2014).

Predictive performance results of stepwise (SR) and ridge 
regression (RR) models and goodness-of-fit criteria of 
Corriedale ewes, are displayed in Table 5 and Figure 4. The 
SR model had the highest R2 value and the lowest values of 
MAD, MAE, and MAPE on the training dataset. How-
ever, the RMSE and MSE of the RR model were high-
er than the SR model. SR outperformed the RR model 
with higher R2 values and smaller values of RMSE, MSE, 
MAD, MAE, and MAPE based on the testing dataset. 
These differences may be due to sampling variance in both 
the training and testing data sets. Overall, these results are 
in agreement with other studies in sheep, reporting the 
better goodness-of-fit criteria in the training dataset than 

the testing dataset (Huma and Iqbal, 2019; Çakmakçı, 
2022; Tırınk et al., 2023; Vázquez-Martínez et al., 2023). 

Figure 4: Actual body weight (kg) and predicted body 
weight (kg) by Ridge regression model for training (a) and 
test dataset (b).

CONCLUSIONS

In this research, we carried out a comparative analysis 
of SR and RR models for predicting the body weight of 
Corriedale sheep. Both SR and RR models provide good 
results but the SR model was slightly superior to the RR 
model. Therefore, we recommend the SR model whose 
prediction equation is: 

           
.
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