
55

J. eng. & appl. sci. Vol. 29 No. 2 July - December 2010 ISSN 1023-862X

INTRODUCTION

There are various ways to deliver data in a
network which basically include:

Unicast Data can be delivered to one specific
destination with unique IP address, this means
only one sender sends data and another receives at
a time.

Broadcast Data can be delivered to all hosts
present in the network whether interested or not.

Multicast Data can be delivered to a group of
interested users across the network.

Most of the traffic generated in the internet is
unicast. To deliver a message to a particular group of
users, unicast is inefficient because it consumes more
bandwidth and will flood the network subsequently
resulting in cogestion in the network. Broadcast is
efficient than unicast in terms of network traffic prob-
lem because sender generates only one data stream to
be delivered to all hosts whether interested or not,
but its drawback is that it floods the entire network.
While in multicast type of applications, e.g.,
videoconferencing and teleconferencing, instead of
sending a separate copy to each of the receivers, the
sender sends to the network a single copy, the net-
work then sends it to all the receivers so it provides

the best features as compared to unicast and broad-
cast because it neither carries the burden to deliver
the data to all hosts separately nor it floods the entire
network.

In unicast, there is one receiver and one sender
so communication is easy, e.g., the File Tranfer Pro-
tocol (FTP) for file tranfer and the Hypertext Transfer
Protocol (HTTP) for web access are unicast applica-
tions using TCP that is a unicast (point - to - point)
protocol1. Whereas in multicast we deal with the group
of users/processes which poses a challenging task to
reliably communicate with the group of users/pro-
cesses. Reliability means no loss, no disordering and
no duplication of packet. Reliability mechanism is the
best option for text data delivery. However, for real
time applications like video conferencing, VoiceOverIP
(VOIP), online games, etc, would be a bottle neck
because such applications cannot afford delay at any
cost. IP Class D addresses are used for multicast
services only.

The idea of our work is to design a protocol to
reliably multicast data to a group of users in LAN
environment. We are striving for protocol which avoids
packet loss, packet duplication, and delivers packets
in order. Our final goal is to develop a protocol to be
implemented in Java which helps in realization of re-
liable multicast in LAN environment.

RELIABLE MULTICAST IMPLEMENTATION IN JAVA

S.W. Shah*, M.I. Babar*, L. Khan**, M.N. Arbab*, H. Ullah*** and R.A. Syed***

ABSTRACT

This paper describes the implementation of reliable group communication in Java. The underlying
delivery mechanism for multicast is presently based on User Datagram Protocol (UDP) that provides a “best
effort” delivery service. Best effort implies that IP packets are treated with essentially equal weight, and while
IP makes an effort to deliver all packets to their destination, packets may occasionally be delayed, lost,
duplicated, or delivered out of order. One of multicast’s weaknesses is its lack of reliability due to its use of
UDP for data transmission. Reliable transmission means that there should be no packet loss, no disordering
and no duplication of packets at the receiver side. The focus of this paper is to implement Reliable Multicast
using Java, which is mainly used for one-to-many connections. This work focuses on reliable multicast in a
local area network (LAN) environment. The reliability has been introduced at application layer and is
receiver’s initiated, NACK (negative acknowledgement) based.

Key words: Java, Multicast, MulticastSocket, Reliable Multicast, Ggroup Communication.

* Department of Electrical Engineering, University of Engineering and Technology, Peshawar, Pakistan
* * COMSATS Institute of Information Technology, Abbottabad
*** Department of Mechanical Engineering, University of Engineering and Technology, Peshawar, Pakistan

56

J. eng. & appl. sci. Vol. 29 No. 2 July - December 2010 ISSN 1023-862X

BACKGROUND AND PREVIOUS WORK

A lot of work has been done in the area of data
communication and still it is an active area of re-
search. For reliable multicasting, techniques at differ-
ent layers of TCP/IP model2 have been proposed that
include physical layer, network layer and application
layer3,4,5,6. In Java API, there is only one class for
multicasting i.e. MulticastSocket7,8. As this class ex-
tends DatagramSocket8 which is UDP based, so it is
unreliable. Until now there is no facility of reliable
multicast data delivery available in Java. Various
packages have been proposed, but none of them
is included in the standard library of Java until
now.

PROBLEM WITH IP MULTICAST AND ITS
SOLUTION

The main problem with current IP based
multicasting technique9 is that it is unreliable and
does not guarantee the data delivery to each member
of the multicast group. Our work is focusing on de-
veloping a protocol with introduction of reliability
where each member of the group will receive the data
multicast to the group. This reliability has been
achieved at application layer of TCP/IP model and is
receiver initiated, NACK based.

We consider a distributed system that consists
of static processes, locations and communication chan-
nels. A location is a logical place that provides an
execution environment for the processes communicat-
ing via message exchange through communication
channels.

Here we denote the set of all possible locations
by ‘L’, i.e., L={l1, l2, l3,........,ln} and a process group by
‘g’ such that g={p1, p2,,pn}. For a given process
group g, the protocol performs the following four
fundamental operations:

join (g, pi) : issued by a process pi for joing the
group g;

leave (g, pi) : issued by a process pi for leaving
the group g;

send (g, Pi, m) : issued by a process pi in order
to multicast a message m to the members of gorup g.

send (ps, pr, s) : issued by a receiving process
pr in the group g to send a string s wtih a NACK to

a sending process ps in wake of failure of message
delivery. The sending process ps may or may not be
a member of the process group g.

Using Java programming language we have
implemented protocol that ensures the data delivery
reliably. The implementation consists of two main
classes and two supporting classes. The main classes
are ReliableMulticastServer (sender) and a
ReliableMulticastClient (receiver), which communi-
cates simple strings of text with a NACK (negative
acknowledgement) implementation. In order to
achieve reliability, we break the message (infor-
mation) to be transmitted into small chunks or
packets and give sequence numbers to them.
The message segments (chunks) are stored in a
buffer, which is a dynamic data structure like Linked
List because if a packet is lost or corrupted during
transmission, the receiver sends back the NACK for
missing packet and the sender retransmits the lost
packet only.

In addition to the main classes, we have two
auxiliary/ supporting classes, ReliableMulticast and
MulticastPacket. The job of ReliableMulticastServer
is to get data from the user, disseminate data, add
metadata to it and then at the end multicast it to the
group.

The job of ReliableMulticastClient is to receive
packet from the group and check for ordered delivery
and deliver it to the end user. It is also the job of
ReliableMulticastClient to send NACK back to the
ReliableMulticastServer for missing packet.
ReliableMulticastClient accepts up to three disorder
packets and stores it to avoid packet duplication. If
the missing packet is sti l l absent then
ReliableMulticastClient sends NACK for the missing
packet to ReliableMulticastServer.

The auxiliary class MulticastPacket is the com-
plex data structure. It contains field for message and
required metadata.

The other auxiliary class is ReliableMulticast
which contains methods for serializing the
MulticastPacket sent and deserializing the
MulticastPacket received on MulticastSocket.

OPERATION OF PROTOCOL

Whenever the user has data to send to the
multicast group, it creates a ReliableMulticastServer

57

J. eng. & appl. sci. Vol. 29 No. 2 July - December 2010 ISSN 1023-862X

instance as shown in Figure 1. It then calls
getOutputStream() method of this class which re-
turns an output stream for user to put data in it.
ReliableMulticastServer in turn receives the data from
user, calls the wrap() method of ReliableMulticast
class to add metadata and serialize it. The wrap()
method returns serialized byte array of message and
its metadata which is put in the DatagramPacket
by ReliableMulticastServer and then multicasts
on MulticastSocket. It also stores a copy of the
sent message in a dynamic data structure i.e. Link
List.

 The ReliableMulticastClient receives the byte
array from MulticastSocket and put i t in
DatagramPacket as shown in Figure 2. It then calls
unwrap() method of ReliableMulticast class to
deserialize it into MulticastPacket. It then checks the
MulticastPacket for ordered delivery. If it is in order,
the ReliableMulticastClient extracts the message from
MulticastPacket and delivers it to the end user. If it
is not in order, then it stores it in buffer and waits for
the specified number of disorder packets allowed. If
specified number of disorder packets allowed limit is
reached, then it sends NACK for the missing packet
to the ReliableMulticastServer. In order to limit buffer
in size on ReliableMulticastServer side , the
ReliableMulticastServer sends check frame on
MulticastSocket when buffer reaches its maximum
size. In response to this, every
ReliableMulticastClient sends its message number,
for which it is waiting, back to the
ReliableMulticastServer . The ReliableMultic
astServer waits for specified amount of time (with
Round Trip Time-RTT- equal to 1 second) and then

cleans the buffer up to least message number re-
ceived.

PERFORMANCE ANALYSIS

An experiment was performed with the protocol
that was implemented in java in parallel with unicast
mode of communication. The experiment had seven
parts and each part involved different number of re-
ceiving clients in multicast group. Different numbers
of receivers having Windows installed were involved
during each part of the experiment. Each part was run
in two different modes, unicast and multicast, for 45
seconds each, in order to analyze the performance of
different techniques. Network traffic was measured in
each mode of each part as shown in Table 1 and to
compare the performance in each part a graph was
drawn as shown in Figure 3. It is clear from the graph
that unicast traffic directly depends on the number of
hosts in the network, while the multicast traffic is
independent of the group size.

Table 1: Network Traffic vs. Multicast Clients

S. No No. of Clients Unicast Multicast
in Multicast Traffic Traffic

Group (Kbps) (Kbps)

1. 3 198 66

2. 4 200 50

3. 5 215 43

4. 6 480 80

5. 7 455 65

6. 8 560 70

7. 9 675 75 Figure 1: Server Operation

58

J. eng. & appl. sci. Vol. 29 No. 2 July - December 2010 ISSN 1023-862X

CONCLUSION

The experiments performed with the arrange-
ment in LAN environment show that multicast
saves a lot of bandwidth which is a scarce resource
across the internet. With bandwidth saving, other
applications can also send their data across the net-
work.

FUTURE WORK

• NACKs received from multiple users simulta-
neously by the server will be tackled in future.
This is a scaling issue related to the size of a
multicast group. As the number of receivers
increases, the amount of NACKs to the sender
subsequently overwhelms its capacity to process
them9. Further, the NACK messages from the
receivers congest the network on the sender site.

• More sophisticated protocols are required for
buffer cleaning, that is, if one client sends check
frame reply having number less than other, then
other clients should not send check frame re-
sponse.

• The client must be intelligent if the NACK is sent
by another on MulticastSocke. It should avoid
sending this duplicate NACK, thus saving
ReliableMulticastServer from NACK implosion.

• The number of group D addresses is limited and
will limit the number of multicast applications,
but this problem is solved in IPv6.Figure 2: Client Operation

Figure 3: Network Traffic vs. Multicast Clients

59

J. eng. & appl. sci. Vol. 29 No. 2 July - December 2010 ISSN 1023-862X

REFERENCES

1. Kenneth Miller, C. StarBurst Communications:
Reliable Multica Protocols and Applications, The
Internet Protocol Journal - Vol. 1, (2).

2. Behrouz A Forouzan, 2002. TCP/IP Protocol
Suite, 2nd edition, McGraw-Hill.

3. Ganjam A. and Zhang H., 2005. Internet Multi-
cast Video Delivery, Proceedings of the IEEE,
Vol. 93, (1).

4. Lao L., Cui J-H., Gerla M. and Maggiorini D.,
2005. A Comparative Study of Multicast Proto-
cols: Top, Bottom, or In the Middle?, IEEE Glo-
bal Internet Symposium (GI 2005), Miami, FL,
USA.

5. Matrawi A. and Lambadaris I., 2003. A Survey
of Congestion Control Schemes for Multicast

Video Applications, IEEE Communications Sur-
veys and Tutorials, fourth quarter 2003, Vol. 5,
No. 2.

6. Adrian Popescu, Doru, 2007. Constantinescu,
David Erman, Dragos Ilie: A Survey of Reliable
Multicast Communication pp. in proc. 3rd Euro-
FGI Workshop on Next Generation Internet
Networks NGI, Trondheim, Norway.

7. Sun Microsystems, Inc. http://java.sun.com/
javase/reference/ api.jsp.

8. Elliotte Rusty Harold, 2005. Java Network Pro-
gramming, 3rd Edition, O’Reilly.

9. Michael Henderson, Adam Ryan, Dr. Haibin Lu,
Dr. Wenjun Zeng: Efficient reliable IP
multicasting, http://www.cs.missouri.edu/~reu/
R E U 0 7 / I P % 2 0 M u l t i c a s t / p r o g r a m _ f i l e s /
Project%20Report.pdf.

