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Hosts and Viruses

Abstract | Crops are threatened by plant viruses worldwide as they hack the host machinery for their reproduction. 
Plants have undergone continuous evolution and have equipped themselves with counter defense and tolerant 
strategies against viral infections. In the 21st century, considerable progress has been made in understanding the 
available natural resistance in plants against viral threats. The review aims to explain the molecular mechanisms 
involved in triggering the antiviral resistance in plants. Antiviral RNA silencing, R-gene mediated resistance 
and host factor related recessive resistance are categorized as most beneficial plant defense approaches used by 
plants. The review also briefly explains about introgression of durable resistance to generate virus resistant culti-
vars for economically important crops through molecular breeding techniques via utilizing advanced molecular 
markers involving cis and trans genetics. The review adhere recent research findings regarding disease resistance 
against viral diseases and concludes via shedding light upon the future prospects in this exciting field of research.
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Introduction

Worldwide crops are under continuous threat 
of various plant diseases. It is estimated that 

about 15% of global production of various crops is 
lost due to plant diseases. Among these diseases, phy-
topathogenic viruses are thought to cause more than 
one-third of plant diseases (Boualem et al., 2016). 
Although the viruses population and distribution is 
somehow suppressed through the management of in-
sect vectors via application of various chemicals (Re-
hman et al., 2013; Islam et al., 2016a; Islam et al., 
2017a) but these chemical treatments cannot directly 
limit plant virus infections. As the usage of chem-
icals have severe negative effects on human beings 

and surround environment (Islam et al., 2016b; Islam 
and Ahmad., 2016) so the development of disease-re-
sistant cultivars to control agricultural losses to viral 
diseases is considered as a major challenge in plant 
breeding research (Kang et al., 2005b). Plant virus-
es acquire host machinery for their reproduction, cell 
to cell movement and further transmission (Islam et 
al., 2017b). Viruses are nucleic acid-based pathogens 
that are packed with a protein called capsids. They 
contain single-stranded (ss) or double-stranded (ds) 
RNA or DNA genome and their genome size are very 
small as compared to other organisms like non-viral 
phytopathogens. Among the plant viruses, ssRNA 
viruses are considered as a major group. Their client 
characteristics include plant cells entry, nucleic acid 
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uncoating, viral proteins translation viral nucleic ac-
ids replication, progeny virions assembly, cell-to-cell 
movement, systemic movement and plant-to-plant 
movement (Carrington et al., 1996). Viruses lack 
necessary components for their independent survival, 
so they rely on numerous factors in the living cells of 
host plants (Boualem et al., 2016). Although virus-
es are relatively simple genetic entities, but resistance 
molecular mechanisms and viral diseases susceptibil-
ity are still not fully comprehended and understood. 
There are several mechanisms for disease resistance 
in plants against virus infections, but it is very diffi-
cult to explain them for various pathosystems sepa-
rately (Brown, 2015). Our general understanding of 
plant-virus interactions and molecular mechanisms 
of these interactions has been achieved through the 
unveiling of several model bacteria-plant systems. 
The gene for gene theory was proposed in the early 
70s (Flor, 1971) and has served as a model through 
explaining that how disease resistances are turned 
on against diverse pathogens for many years (Keen, 
1990). On the base of gene for gene theory, a single 
resistance gene (R-gene) encoded by the host recog-
nizes the presence of avirulence (Avr) proteins in bac-
terial type III secretion system secreted by effectors of 
fungal haustoria or nematodes stylets, and triggers a 
hypersensitive response of resistance leading towards 
the rapid cell death (HR) (Dangl and Jones, 2001). 
Firstly, kinase protein was characterized from host 
plants which exhibited its association with resistance 
as it clarified that R gene physically interacts with ei-
ther AvrPto (Martin et al., 1993) or AvrPtoBits for a 
virulence determination (Tang et al., 1996). Since in 
multiple plant species, numerous R-genes have been 
characterized. The most general R genes types can be 
grouped into two classes, (A) genes encoding proteins 
nucleotide-binding leucine-rich repeat (NB-LRR), 
(B) genes encoding receptor-like kinase/ recep-
tor-like proteins (Rathjen and Moffett, 2003). About 
a decade later, another model was proposed known as 
zig-zag ( Jones and Dangl, 2006; Cook et al., 2015). 
In the zig-zag model, there are two distinct defense 
responses in the plant defense system. The prima-
ry defense level is called PAMP/MAMP-triggered 
immunity (PTI), and the secondary defense level is 
called effector-triggered immunity (ETI). A basic 
defense mechanism presented by PTI is preventing 
invasion of the pathogen through cell wall thickening 
in response to specific structures or pathogen associ-
ated proteins so-called pathogen-associated molecu-
lar patterns (PAMPs) or microbe-associated molec-

ular patterns (MAMPs). Plants show susceptibility 
only when a pathogen successfully establishes both 
PTI response suppression and its pathogenic effec-
tor’s facilitation. ETI, the second defense response 
level is triggered when the products of R gene direct-
ly or indirectly sense specific effectors presence also 
called Avr factors. Consequently, an effective ETI will 
keep the plants resistant; however, an insufficient ETI 
will lead to the establishment of disease, i.e., the sus-
ceptibility of the plant. A modified hypothesis called 
guard hypothesis proposed a decoy model and eluci-
dated in multiple pathosystems (Van der Hoorn and 
Kamoun, 2008). Models of general resistance do not 
fit well with viral resistance primarily because of virus 
intracellular parasitic nature which is unlike to other 
pathogens as it clearly requires the machinery of the 
live host cell (Islam et al., 2017b). For example, re-
ceptors of pattern recognition which serve as a com-
ponent of major defense by triggering the first layer 
of resistance when a receptor of plasma-membrane 
perceives a fungal or bacterial MAMP or PAMP 
(Tena et al., 2011), cannot play a role in plant viruses 
fighting because viruses do not express extracellular 
PAMPs. Although RNA silencing serves as a major 
component in the antiviral defense mechanism, how-
ever, the strategy of R-gene-mediated resistance is ef-
fective against viruses as well as other phytopathogens 
(Nakahara and Masuta, 2014; Rodriguez et al., 2015). 
In the case of recessive inheritance resistance, several 
recessive resistance genes have been characterized in 
bacterial and fungal pathogens research including xa5, 
a Xanthomonas resistance gene in rice (Iyer-Pascuz-
zi and McCouch, 2007), and mlo, a resistance gene 
for powdery mildew in barley (Buschges et al., 1997). 
The majority of genes related to recessive resistance 
have been identified in virus-plant pathosystems. The 
review sheds light upon naturally existing resistance 
against plant viruses. i.e. antiviral RNA silencing, 
R-gene-mediated resistance and recessive resistance. 
Secondly, this review discusses the strategies of mo-
lecular breeding using advanced molecular marker 
and utilization of trans or cis genetics for engineering 
disease resistances against plant viruses.

A glimpse of viral disease resistance in plants
Tobacco mosaic virus (TMV) is the first virus dis-
covered and isolated (Holmes, 1929) from Nicotiana 
glutinosa and its counterpart R gene served as a model 
for studying HR-based resistance, systemic acquired 
resistance (SAR), and gene-for-gene theory. Nicotia-
na gene was first viral R-gene to be cloned and char-
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acterized which occurred soon after the Pto cloning 
(Whitham et al., 1994). Moreover, TMV-triggered 
SAR is thought to be consistent for at least three 
weeks (Vlot et al., 2008). Despite the fact that plant 
virus resistance studies have made prominent contri-
butions to our overall disease resistance knowledge in 
plants but the critical advances in molecular mecha-
nisms of disease resistance and their understanding 
models have primarily come from bacterial and fun-
gal Phytopathosystems. Recent studies using RNA 
silencing, virus-induced gene silencing, large-scale 
genomic analysis and epigenetic analysis techniques 
have accelerated the plant antiviral mechanisms explo-
ration at the molecular level. Combination of genetic 
resistance approaches (Figure 1A) and conventional 
management strategies (Figure 1B) can be helpful 
in exploiting natural resistance of plants against vi-
rus infections (Maule et al., 2007). R gene-mediat-
ed resistance which is the most intensively explored 
form of resistance towards the diverse bacteria, fungi 
and viruses is frequently HR responsible and is an 
effective way to gain resistance against plant viruses. 
But as the viruses are intracellular parasites consist-
ing of a small RNA or DNA capsid packed genome, 
RNA silencing strategy of RNA is one of the ma-
jor strategies to ensure antiviral resistance (Nakahara 
and Masuta, 2014; Rodriguez et al., 2015). Successful 
antiviral RNA silencing primarily results in the viral 
genome degradation at the site of initial or prima-
ry infection (Voinnet, 2001). Recessive inheritance 
resistance mostly acquired via alteration of key host 
factors which are required for establishment of viral 
infections and is also recognized as an effective mech-
anism of antiviral resistance (Robaglia and Caranta, 
2006). In addition to those main antiviral mecha-
nisms, it was demonstrated in several systems that the 
ubiquitin-proteasome system and processes of DNA 
methylation which have shown to have roles in cru-
cial resistance in other pathosystems are also involved 
in antiviral defense (Butterbach et al., 2014).

Disease resistance through antiviral RNA silencing
Antiviral RNA Silencing, also referred to as post-tran-
scriptional gene silencing (PTGS), or RNA interfer-
ence (RNAi) is a surveillance response triggered by 
double-stranded (ds) RNA (Hammond et al., 2001). 
RNA silencing plays an important role in the gene 
expression regulation during development and in de-
fense against plants biotic/abiotic stresses (Carrington 
and Ambros, 2003). Plants can avoid infection of virus 
specifically by viral RNA degrading through antiviral 

Figure 1: (A) Genetic defense strategies against viruses 
(B) Conventional defense approaches against plant virus 
diseases.

RNA silencing, which has been demonstrated as a 
common plant defense for a majority of the plant vi-
ruses (Incarbone and Dunoyer, 2013). Viral dsRNA 
segments are triggered through antiviral RNA silenc-
ing generated either by replication intermediates or 
by secondary intra-molecular RNA folding (hairpin) 
structures in the host cells (Marathe et al., 2000). In-
side plant cells, plant viral dsRNAs are detected by 
Dicer-like (DCL) enzymes induced via virus-derived 
small RNAs (vsRNAs) (Ding and Voinnet, 2007). 
These dsRNAs incorporated the vsRNAs into the 
RNA-induced silencing complex (RISC) and guide 
Argonaute (AGO) proteins which induce the viral 
RNA degradation or translational arrest (Pumplin 
and Vionnet, 2013). Further proliferation of antivi-
ral RNA silencing signals transferred via the phloem 
and plasmodesmata lead towards the systemic viral 
defense (Molnar et al., 2010). There is increasing ev-
idence that antiviral RNA silencing control DNA 
viruses (Incarbone and Dunoyer, 2013). In gemini-
viruses which have circular DNA genome (SS) vsR-
NA and PTGS of viral coding sequences have been 
observed during resistance responses (Ribeiro et al., 
2007). Moreover, it was demonstrated that Ty-1 (to-
mato resistant gene) mediated viral DNA genome 
hypermethylation results in enhancement of tran-
scriptional gene silencing (Butterbach et al., 2014). 
To overcome the defense system of the host plants, 
the viruses have acquired a counter-defense strategy 
by disruption of host antiviral silencing (Ding and 
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Vionnet, 2007). Many RNA silencing viral suppres-
sors (VRSs) have been identified without obvious se-
quence or structural similarities from diverse viruses 
(Burgyan and Havelda, 2011). Most VRSs are mul-
tifunctional including the viral RNA sensing inhibi-
tion, dicing RISC amplification assembly and RNA 
targeting (Burgyan and Havelda, 2011). Several piec-
es of evidence increase the acceptability of molecular 
arms race theory as plant exhibited various counter 
defense responses to fight against VRSs (Zhao et al., 
2016).

Resistance through R-Gene
R-gene mediated resistance, race-specific resistance 
against diverse phytopathogens encoding correspond-
ing dominant Avr genes is conferred by dominant 
R genes (Hammond-Kosack and Jones, 1996). This 
type of resistance is associated with HR in many cas-
es. HR-mediated cell death immediately eliminates 
infected cells and prevents systemic spread of viral 
infections. The HR is generally associated with sig-
naling of mitogen-activated protein kinase (MAPK); 
increase in jasmonic acid ( JA), salicylic acid (SA), cal-
cium ion influx, callose deposition at the plasmodes-
mata, membrane permeability modification defense 
genes activation and an immediate reactive oxygen 
species (ROS) and nitric oxide (NO) accumulation 
(Yang et al., 2001). The majority of plant R genes en-
code nucleotide-binding (NB) and leucine-rich-re-
peat (LRR) domains, whereas the proteins of Avr have 
very little common characteristics ( Jones and Dangl, 
2006). There are three domains of NB-LRR proteins 
in the center the nucleotide-binding site (NBS) at 
the C-terminal end, a Coiled-coil (CC) at the N-ter-
minus toll and human interleukin receptor (TIR) 
domain (Meyers et al., 2003). Besides conserved 
NBS domain includes an Apaf-1/R protein/CED 4 
(ARC) domain, which is involved in the hydrolysis 
of ATP and intra-molecular interactions (Rairdan 
et al., 2008). NB-LRR proteins with intra-molecu-
lar interactions are conserved at certain levels and are 
critical for proper functioning of R protein (Rairdan 
et al., 2008). NB-LRR proteins exhibit LRR domain 
which is the primary determinant for conferring the 
specificity to recognize plant pathogens ( Jones and 
Dangl, 2006). The N-terminus is acknowledged serv-
ing an important role for the interaction of specific 
Avr (Collier and Moffett, 2009). NB-LRR proteins 
recognize the avirulent effectors which sequentially 
initiates downstream defense responses. So far more 
than 20 viral R genes with dominant inheritance 

have been characterized. The first viral R-gene to be 
cloned and characterized as N is a resistance gene of 
tobacco encoding a protein of TIRNB-LRR confer-
ring resistance to TMV (Whitham et al., 1994). The 
counterpart of N is the 50 kDa helicase domain p50 
and viral 126 kDa protein part in the TMV replicase 
complex (Padgett et al., 1997). In the case of TMV 
resistance, p50 helicase domain is recognized by N 
through a direct interaction (Ueda et al., 2006). A po-
tato protein Rx conferring resistance to Potato virus 
X (PVX) is a typical protein CC-NB-LRR. Its coun-
terpart determinant Avr is the PVX coat protein (CP) 
(Bendahmane et al., 1995; 1999). The each functional 
domain role and intramolecular interactions among 
those domains have been studied intensively in Rx 
(Rairdan et al., 2008).

Resistance through dominant and recessive inher-
itance
As intracellular parasites, viruses are exclusively de-
pendent on cellular host mechanisms for their life 
cycle. When viral particles enter a plant cell, the 
genome is released from the capsid, and early viral 
proteins are translated. After that, the virus confronts 
various host defense levels. Because of the limited 
numbers of viral gene products, the virus requires a 
series of host factors to pursue a cycle of successful 
infections including replication, transcription, trans-
lation, cell to cell movement and long distance spread 
(Truniger and Aranda, 2009). The absence or a neces-
sary host factor alteration can be an efficient plant de-
fense strategy and is considered a passive form of re-
sistance (Fraser, 1990; 1992). Such passive resistance 
frequently shows recessive inheritance. The resistance 
mediated by R gene described in the previous section 
can be considered in this context. It is predicted that 
more than half plant virus resistances are recessive-
ly inherited (Kang et al., 2005b) many are yet to be 
characterized (Truniger and Aranda, 2009). A large 
proportion of identified R genes to date confer resist-
ance to various potyviruses. Recessive R genes confer-
ring resistance of potyvirus have been identified and 
deployed for decades in numerous crops. Translation 
factor of eukaryotes4E (eIF4E) plays a major role in 
the host translation initiation by messenger RNAs 
recruiting the ribosomal complex and has repeatedly 
been identified as an essential host factor required for 
virus infection (Truniger and Aranda 2009). Natural 
variation in eIF4E preventing sequestration of virus 
confers effective resistance infection of potyvirus in 
multiple crop species suggesting that the host fac-
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tors alteration such as translation initiation factors 
is a common strategy for developing plants viral re-
sistance (Yeam et al., 2007; Cavatorta et al., 2008). 
Those factors include pvr1 and pvr2 in pepper (Gao 
et al., 2004) mol in lettuce (Ling et al., 2009) sbml 
in pea (Nicaise et al., 2003) rym4/5 in barley (Ruffel 
et al., 2002) pot1 in tomato (Kang et al., 2005a) and 
zym-FL in watermelon (Wicker et al., 2005). It was 
demonstrated that the variations in the amino acid in 
eIF4E is responsible for potyviral resistance in multi-
ple species have independently arisen and been select-
ed positively in their evolutionary context (Cavatorta 
et al., 2008). The recently characterized ty5, which 
confers Tomato yellow leaf curl virus (TYLCV) re-
sistance encodes the messenger RNA surveillance 
factor Pelo and is another example of recessive resist-
ance in tomato (Lapidot et al., 2015). Pelo impaired 
functionalities which are implicated in the protein 
synthesis and ribosome recycling-phases appear to 
trigger the viral infection suppression in resistant ty5 
genotypes. Various examples of genes characterized 
for dominant and recessive inheritance have been ex-
plained (Table 1).

Breeding resistance against viral diseases
Development of disease resistant varieties which 
will ultimately contribute to increases crop yield has 
been a major goal in most of the breeding programs. 
Marker-assisted selection (MAS) has been success-
fully and widely deployed for decades to generate 
disease resistance by applying genetic markers for se-
lection and recombination of multiple resistant genes 
(Miedaner and Korzun, 2012). In tomato, which is 
an economically important vegetable crop, MAS has 
been actively utilized for major genes of virus-resist-
ance including Ty1 and Ty2 for TYLCV, Sw5 for To-
mato spotted wilt virus and Tm2 for Tomato mosaic 
virus (Lee et al., 2015). A molecular marker refers 
to a DNA marker and can serve for genetic poly-
morphisms and detection of a technical phenotypic 
variation. Many technological innovations including 
techniques of next-generation sequencing (NGS) 
( Jones et al., 2009) single-nucleotide polymorphism 
(SNP) (Salgotra et al., 2014) genotyping have accel-
erated studies of genome-wide association (GWAS) 
and greatly improved the accuracy, cost-effective-
ness, and MAS time-efficiency (Thomson, 2014). 
To enhance the access of genomic information, the 
gene-based markers have led towards the consider-
able number of disease resistances which is greatly 
advantageous compared with neutral markers linked 

to the specific genes (Kage et al., 2015; Kamphuis et 
al., 2015). PCR-gel based systems which use cleaved 
and amplified polymorphic sequence (CAPS) mark-
ers and high-throughput SNP detection systems via 
utilization of high-resolution melt (HRM) markers 
have been widely utilized to detect multiple SNPs as-
sociated with traits of disease resistance ( Jung et al., 
2015).

There are a few success stories in introgression of re-
sistance against the target viruses. For example, to-
mato-infecting viruses have been neutralized to some 
extent via breeding host resistance by incorporation of 
genes from Solanum species (S. peruvianum, S. habro-
chaites, S. pimpinellifolium  and S. chilense) ( Ji et al., 
2007a). Molecular mapping and characterization of 
resistance genes via the use of molecular markers have 
been done ( Ji et al., 2007a).TY-1 which is a major 
and partial dominating resistant gene was identified 
from S. chilense line # LA1969 and was introgressed, 
mapped towards the shorter arm of chromosome 6 
(Zamir et al., 1994). Similarly, fromS. pimpinellifo-
lium, another major resistance QTL was exhibited 
and was mapped at same chromosome 6 (TG153-
CT83) but conferring a different position (Chague, 
1997). Another dominant gene (Ty-2) introgressed 
from S. habrochaites accession H24 was mapped to 
shorter arm of chromosome 11 (Hanson et al., 2000). 
Correspondingly, mapping of TY-3 which is catego-
rized as partially dominant major gene extracted out 
from S. chilense accessions LA1932 and LA2779 was 
done at chromosome 6 ( Ji et al., 2007b). The particu-
lar gene derived from LA2779 was considered to be 
greater in length and its linkage with TY-1exhibited 
that both of these (Ty-3 and TY-1) are code specific 
and are allelic towards RNA-dependent polymerase 
(Verlaan et al., 2013). Further mapping revealed the 
exhibition of TY-4 mapping to chromosome 3 at its 
longer arm. About the development of symptoms 
in the host, TY-4 gene encounters 16% variation as 
compared to TY-3 which accounts 60% major effects 
( Ji et al., 2009). Alternatively, upon chromosome 4, 
a resistant but recessive gene TY-5 was introgressed 
from a genotype called Tyking (Hutton et al., 2012). 
The particular gene has similarities with TY-5 loci 
exhibiting 40% symptomatic variation (Anbinder et 
al., 2009). All these resistant genes encourage towards 
acquiring resistance against the viruses by contribut-
ing lower levels of viral particle accumulation in these 
genotypes. The tomato genotypes having TY-1 or 
Ty-3 genes exhibited 10% fewer virus symptoms than 
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Table 1: Genes characterized for dominant and recessive inheritance in various plants against plant viruses.
Plant species Gene/

Locus
Major virus Resistance factors and 

features
Resistance 
type

Avirulence 
factor

Reference

Arabidopsis 
thaliana

HRT Turnip crinkle virus CC-NBS-LRR (HR) Dominant CP Ren et al., 2000
JAX1 Platago asiatica mo-

saic virus
Jacalin like lectin 
(Blocks RNA
Accumulation)

Dominant Unknown Yamaji et al., 
2012

RCY1 Cucumber mosaic 
virus

CC-NBS-LRR (HR) Dominant CP Takahashi et al., 
2002

RTM1 Tobacco etch virus Jacalin family (Blocking 
systemic
Movement)

Dominant CP Chisholm et al., 
2000

RTM2 Tobacco etch virus Small heat shock
Protein (Blocking 
systemic
Movement)

Dominant CP Whitham et al., 
2000

RTM3 Tobacco etch virus MATH-containin
g protein (Blocking 
systemic
Movement)

Dominant Unknown Cosson et al., 
2010

sp1 Turnip mosaic virus eIF(iso)4E (mutagen-
esis)

Recessive VPg Lellis et al., 
2002

cum1 Cucumber masaic 
virus

eIF4E (mutagenesis) Recessive Unknown Yoshii et al., 
2004

cum2 Cucumber masaic 
virus

eIF4E (mutagenesis) Recessive Unknown Yoshii et al., 
2004

Brassica camp-
estris

BcTuR3 Turnip mosaic virus TIR-NB-LRR (Sys-
temic resistance)

Dominant Unknown Cosson et al., 
2010

TuRB07 Turnip mosaic virus CC-NBS-LRR (ER) Dominant Unknown Ma et al., 2010
Capsicum spp. L (multi-alleles) Tobacco mosaic virus CC-NBS-LRR (HR) Dominant CP Tomita et al., 

2011
pvr1/pvr2
(multi-alleles)

Potato virus Y eIF4E Recessive VPg Ruffel et al., 
2002;

Capsicum ann-
uum

pvr6 Pepper veinal mottle 
virus

eIF(iso)4E Recessive VPg Ruffel et al., 
2006

Cucumis melo nsv Melon necrotic spot 
virus

eIF4E Recessive Unknown Nieto et al., 
2006

Glycine max, Rsv1 Soybean mosaic virus CC-NB-LRR (HR) Dominant P3, HC-Pro Hayes et al., 
2004

Hordeum vul-
gare 

rym4/5(multi-al-
leles)

Barley yellow mosaic 
virus

eIF4E Recessive VPg Stein et al., 
2005

Lactuca sativa mo1 (multi-al-
leles)

Lettuce mosaic virus eIF4E Recessive CI- Cter, 
VPg

Nicaise et al., 
2003

Oryza sativa rymv1 Rice yellow mottle 
virus

eIF(iso) Recessive 4G, VPg Albar et al., 
2006

Oryza glaber-
rima 

rymv2 Rice yellow mottle 
virus

CPR5(H) Recessive unknown Orjuela et al., 
2013

Phaseolus vul-
garis 

I Bean common mosaic 
virus

TIR-NBS-LRR (HR) Dominant Unknown Vallejos, 2006

RT4-4 Cucumber mosaic 
virus

TIR-NBS-LRR (Sys-
temic necrosis)

Dominant 2a Seo et al., 2006

bc3 Bean common mosaic 
virus

eIF4E Recessive unknown Naderpour et 
al., 2010
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Pisum sativum sbm1 Pea seed-born mosaic 
virus

eIF4E Recessive VPg Gao et al., 2004

Solanum 
chilense 

Ty1/Ty3 (mul-
ti-alleles)

Tomato yellow leaf 
curl virus

RDR (RNA silencing) Dominant Unknown Butterbach et 
al., 2014

Solanum habro-
chites 

Tm1 Tomato mosaic virus TIM-barrel-like
domain
(Blocking replication)

Dominant Replication 
protein

Ishibashi et al. 
2007

Solanum lyco-
persicum 

pot1 Potato virus Y eIF4E Recessive VPg Ruffel et al., 
2005

Solanum peruvi-
anum 

Tm2 (multi-al-
leles)

Tomato mosaic virus CC-NBS-LRR (HR) Dominant MP Lanfermeijer et 
al. 2003

Sw5b Tomato spotted wilt 
virus

CC-NBS-LRR (HR) Dominant MP (NSm) Brommon-
schenkel et al.,
2000

Solanum tubero-
sum 

Rx (multi-alleles) Potato virus X CC-NBS-LRR (Block-
ing replication)

Dominant CP Bendahmane et 
al., 2002

Y1 Potato virus Y TIR-NBS-LRR (HR) Dominant Unknown Vidal et al., 
2002

Vigna mungo CYR1 Mungbean yellow 
mosaic virus

CC_NB_LRR Dominant CP Maiti et al., 
2012

Here; MATH (meprin and TRAF domain), CP (coat protein), HC-Pro (helper component proteinase), MP (movement protein), RDR 
(RNA-dependent RNA polymerase), ER (extreme resistance without any necrotic local lesion), eIF4E (eukaryotic translation initiation fac-
tor 4E), eIF(iso)4E (eukaryotic translation initiation factor iso 4E), Pelo (a messenger RNA surveillance factor), VPg (genome linked viral 
protein), CPR (constitutive expresser of pathogenesis related genes), CI-Cter (C terminal of cylindrical inclusion helicase)

the susceptible ones (Verlaan et al., 2013). Similarly, 
tomato accessions carrying TY-2 genes showed least 
virus particle accumulation (Barbieri et al., 2010). The 
other successful examples in which resistance has been 
tried to achieve through pyramiding of virus genes via 
crossing or backcrossing (Yang et al., 2013) include 
glycine max-soybean mosaic virus (SMV) (Shi et al, 
2008), Capsicum annuum- pepper veinal mottle virus 
(PVMV) (Caranta et al., 1996), barley yellow mosaic 
virus (BaYMV), Hordeum vulgare-barley mild mosa-
ic virus (BaMMV) (Werner et al., 2005), Phaseolus 
vulgaris-bean common mosaic virus  (BCMV) (Kelly 
et al., 1995) and tomato leaf curl disease (ToLCD) 
(Kadirvel et al., 2013). Resistant accessions via pyra-
miding have been developed by introgression of TY-2 
and TY-3 genes extracted from S. habrochaites and S. 
chinense respectively (Prasanna et al., 2014). 

Viruses re-organize themselves and go under recom-
bination leading towards their spread towards the 
cultivars which are thought to be immune to them 
(Islam et al., 2017). For example, tomato cultivars i.e. 
Roma and Moneymaker which were famous for their 
resistant characters against viruses and better yields 
became susceptible to ToLCD (Fufa, 2011; Camara, 
2013). To manage this problem, new tomato cultivars 
have been adopted widely worldwide which are toler-

ant to begomoviruses infections and gives better yield 
even after being infected by viruses (Ozores-Hamp-
ton et al., 2013; Butterbach et al., 2014). Recently, 
41 tomato genotypes were screened in Senegal for 
their resistance against TYLCD (Camara, 2013) out 
of which 12 were found to have durable resistance 
against the disease. But when other RNA viruses in-
fected these 12 genotypes, they lost their considera-
ble resistance to TYLCD (Butterbach, 2014). Similar 
experiments in Nigeria revealed resistant pepper and 
tomato cultivars against viruses (Alegbejo, 2000; Vu, 
2013; Medina, 2013; Reyes, 2013). In Asian regions, 
cotton is the most important crop which is under 
constant threat of cotton leaf curl virus disease (CL-
CuD). Researchers evaluated that Gossypium gossy-
pioides still have durable resistance against CLCuD 
(Azhar et al., 2013). Furthermore, considerable resist-
ance has been achieved through transgenics showing 
repression genes via utilization of Agrobacterium tu-
mefaciens mediated transformations (Balasubrama-
ni et al., 2003; Katageri et al., 2007; Amudha et al., 
2011; Hashmi et al., 2011).

But in spite of being the best way, there are several 
limitations such as, (a) the resistance exploited by the 
breeders is mostly conferred by a single dominant gene 
(Frasar et al., 1990) which do not prove long-lasting 
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in the field and gets hammered after a couple of years 
in the field by the pathogen (Pelham et al., 1970), (b) 
unavailability of desired genetic resistance in wild-
type relatives (c) linkage of non-desired traits with 
the resistance-conferring gene, (d) desired resistance 
may be multigenic which may possess difficulties in 
gene knockdown and transfer of genetic traits, (e) 
larger genomic size with higher representative DNA 
(f ) difficulties in cloning the resistance encoded genes 
because of insufficient mapping of various plant spe-
cies, (g) difficulty in tagging for identification and 
isolation of resistant genes against viruses due to lack 
of knowledge about available resistance in most plant 
species against viruses (Valkonen et al, 1998). 

Conclusion and future prospects
Effective antiviral resistance mechanisms developed 
by the plants through complex co-evolutionary pro-
cesses. Over the past decade, plant resistance molec-
ular mechanisms to viruses have been investigated 
exclusively, and remarkable progress has been made. 
The viral genetic resistance which is naturally occur-
ring primarily comprises of antiviral RNA silencing, 
R-gene-mediated resistance and recessive resistance. 
As viruses are intracellular parasites consisting of a 
small genome of RNA or DNA packed in a capsid 
thus RNA silencing is considered as a major antivi-
ral mechanism. Successful RNA antiviral silencing 
primarily results in the viral genome degradation at 
the site of the initial infection. The R-gene-mediat-
ed resistance which is the most intensively explored 
resistance is also effective in conferring resistance to 
plant viruses. Recessive inheritance resistance is most-
ly acquired via alteration of key host factors for viral 
infection is also recognized as a necessary antiviral 
mechanism. The most effective strategies of resistance 
would be selected and used in each plant pathosystem 
is mainly based on the arms-race relationships and 
the resistance acquisition fitness cost. Understanding 
the plant viral resistances at the molecular level will 
allow us one step closer for effective accomplishment 
of durable viral resistance. But as we know, all the vi-
ruses continuously undergo evolutionary phases and 
lead to the development of new strains, so more and 
more efforts are required to find resistant wild type 
plant species against viruses. These wild-type resist-
ant traits should be characterized to incorporate into 
the economically important crop plants. Similarly, 
the interaction of begomoviruses and its insect vector 
should be widely studied and integrated management 
approaches must be utilized to minimize the vector 

populations. These vectors are harbored by thou-
sands of different weed species all around the world. 
So control of these weeds is also a necessary step for 
the management of viruses. Furthermore, biotechno-
logical approaches like vector-enabled metagenomics 
(VEM), next generation sequencing (NGS), Zinc fin-
ger mechanism (ZFM) and Crisper-Cas9 are needed 
to be tested to stay ahead and for the development of 
virus free crops.
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