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Introduction

The global population is growing at a rapid pace 
and is projected to reach 9.1 billion by 2050. FAO 

(2023) while global average temperature is claimed to 
leap 1.8 to 4 °C by 2100 leading to serious concerns for 
food security of climate sensitive countries (Cubasch 
et al., 2013). Tomato being second most valuable 
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(Reimers and Keast, 2016) and second most widely 
grown crop worldwide after potato (Dorais et al., 
2010) encounters various biotic and abiotic stresses 
during its growth period. Due to its high nutritional 
value, demand of fresh tomato as well as tomato-based 
products is increasingly attracting consumer interest 
(Nasir et al., 2015). Presently, Pakistan’s tomato crop 
production is around 620.1 thousand tonnes ranking 
it 36th world wise (FAOSTAT, 2019) with an export 
percent in the world trade practice almost negligible. 

Brassinosteroids are acknowledged as a sixth category 
of plant hormones and were initially reported in 1970 
to have a growth promoting activity in rape (Brassica 
napus). Since its minute quantity isolation from 227kg 
of bee collected pollen, dozens of brassinosteroids from 
multiple plant species have been identified (Grove et 
al., 1979; Bajguz and Tretyn, 2003). Brassinosteroids 
(BRs) are found in every organ of the plant but are 
abundantly present in pollen and immature seeds. 
The quantity in pollens range from 1 to 100 ng g-1 
of fresh weight while leaves and shoots have 0.01 
to 0.1 ng g-1 of brassinosteroids (Bajguz and Tretyn, 
2003). Brassinosteroids role in enhancing plant 
resistance to various environmental stresses has been 
widely investigated through research experiments in 
laboratories, green houses as well as in field studies. 
Brassinosteroids helps the plant to pursue normal 
growth activities under stress condition (Clouse, 
2002) and also provide protection to the plants from 
the harmful effects of low and high temperature stress, 
salinity, pathogens and injuries caused by herbicides 
(Khripach et al., 2000).

High temperature stress is a major constraint of 
tomato production in areas where the temperature 
goes beyond 35 degrees celsius during flower and 
fruit initiation. Various studies about brassinosteroids 
role in Arabidopsis thaliana have opened a door of 
advancement in brassinosteroids research which 
resulted in confirmation of several brassinosteroid 
signaling components (Clouse and Sasse, 1998; Li 
and Jin, 2007). Brassinosteroids have also proved its 
prominent role in various crops including Wheat 
(Sairam, 1994), Sugar beet (Schilling et al., 1991), 
cucumber (Pustovoitova et al., 2001) and tomato 
(Kamuro and Takatsuto, 1991). Tomato and brassica 
napus seedlings when treated with EBR resulted 
in enhanced tolerance to lethal heat treatment in 
contrast to the untreated seedlings. The brassinolide 
treated seedlings gathered more heat shock proteins 

ultimately resulting in resistance to heat stress 
(Dhaubhadel et al., 1999).

Brassinosteroids have a pivotal feature of enhancing 
plant thermotolerance, but more systematic and 
thorough investigation has to be carried out on 
brassinosteroids functionality to modulate plant heat 
stress responses. To systematically explore the impact 
of brassinosteroids in promoting tomato growth and 
development, this in-depth research experiment was 
performed.

Materials and Methods

The experiment was carried out at Horticulture 
Research Farm, Department of Horticulture, The 
University of Agriculture Peshawar during 2017-
18 with an objective to find the influence of various 
levels of brassinolide on selected tomato varieties. The 
experiment was laid out in Randomized Complete 
Block Design (RCBD). Two factors that are tomato 
varieties (Roma, Rio Grande and Yaqui) and various 
levels of brassinolide (0, 0.5 ppm, 1 ppm and 1.5 ppm) 
were studied. 24-Epibrassinolide was used as a source 
for brassinolide and it was provided to the plants via 
foliar application. Data was recorded for plant height, 
number of leaves per plant, number of flower clusters 
per plant, number of flowers per cluster, Blossom end 
rot (BER) (%) and yield (t ha-1). Data recorded was 
analyzed using Statistix 8.1 software and LSD (Least 
Significant Difference) test at P ≤ 0.05 was applied 
for mean comparison (Steel and Torrie, 1980).

Results and Discussion

Number of leaves per plant
Number of leaves per plant was significantly influenced 
by tomato varieties and brassinolide concentrations 
while the effect of year of planting and interactions 
were not significant. Rio Grande plants resulted in 
highest no. of leaves per plant (118.47), followed by 
(111.87) in Roma, while lowest no. of leaves per plant 

(103.37) were observed in Yaqui plants (Table 1). No. 
of leaves per plant increased significantly with the 
increase in brassinolide concentration. The maximum 
no. of leaves per plant (116.41) were recorded in 
plants applied with 2 ppm brassinolide which was at 
par with (115.76) leaves plant-1 in plants applied with 
1.5ppm brassinolide. The minimum no. of leaves per 
plant were noted in control plants. 
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Table 1: Influence of brassinolide concentrations on 
number of leaves plant-1 of tomato varieties.
Treatment Years Mean

2017 2018
Varieties
Roma 111.92 111.83 111.87 b
Rio Grande 118.36 118.59 118.47 a
Yaqui 103.11 103.63 103.37 c
LSD (0.05) 1.959
Brassinolide (ppm)
0 104.62 104.09 104.36 d
0.5 107.68 108.31 107.99 c
1.0 111.42 111.92 111.67 b
1.5 115.71 115.81 115.76 a
2.0 116.23 116.60 116.41 a
LSD (0.05) 2.19
Mean 111.13 111.35
Interactions
Y x V NS Y x BR NS
V x BR NS Y x V x BR NS

Means followed by similar letter(s) in column do not differ 
significantly from one another. NS = Non-significant and *, **= 
Significant at 5 and 1% level of probability, respectively.

Brassinolide considerably increased the number 
of leaves per in all tomato cultivars. Brassinolide is 
known to have a direct influence on leaves, deficiency 
of brassinolide or brassinolide biosynthesis blockage 
can lead to dark curly green leaves and hinders normal 
growth (Bishop and Koncz, 2002). Exogenously 
applied brassinolide resulted in enhanced vegetative 
and reproductive growth in several crops (Fariduddin 
et al., 2004, 2005; Bajguz and Tretyn, 2003; Hayat et 
al., 2001a; Ali et al., 2008; Hasan et al., 2008). Higher 
number and expanded leaves of tomato resulted with 
brassinolide application due to the influential role 
of brassinolide in multiple physiological processes 
including cell division, vascular differentiation and 
cell elongation (Gudesblat and Russinova, 2011). 
Our results are in conformity with Kang et al. (2009) 
who studied the influence of brassinolide treatment 
in cucumber plants and recorded an enhanced 
photosynthesis brassinolide-treated plants as 
compared to control plants. An increased CO2 uptake 
by soyabean plants when treated with brassinolide 
has also been reported which in turn increased 
photosynthesis (Zhang et al., 2008). Fariduddin et al. 
(2009) reported an enhancement in net photosynthesis 
with the foliar application of brassinolide combined 
with seed soaking. Similar positive influence of 

brassinolide application on net photosynthesis was 
also confirmed by several studies in multiple crops 
including geranium (Swamy and Rao, 2008) and 
munbean (Ali et al., 2008a). Higher number of leaves 
per plant as well as fresh and dry weight resulted with 
treatment of plants with 28-homobrassinolide (Hayat 
et al., 2001). Similarly, Irfan et al. (2017) also recorded 
an increased number of leaves, root length and plant 
height as a result of foliar brassinosteroid treatment 
of tomato plants.
 
Plant height (cm)
Plant height was significantly influenced by different 
varieties and brassinolide concentrations while the 
year effect and interactions were not significant. Rio 
Grande plants produced tallest plants (82.72 cm), 
followed by (77.25 cm) in Roma, while shortest plants 
(74.61 cm) were observed in Yaqui plants (Table 2). 
Concerning various brassinolide concentrations, 
tallest plants (85.48 cm) resulted with treatment of 
2ppm brassinolide as compared to the plant height 
(71.86 cm) that was recorded for control plants.

Table 2: Influence of brassinolide concentrations on plant 
height (cm) of tomato varieties.
Treatment Years Mean

2017 2018
Varieties
Roma 77.28 77.21 77.25 b
Rio Grande 82.80 82.64 82.72 a
Yaqui 75.51 73.71 74.61 c
LSD (0.05) 2.100
Brassinolide (ppm)
0 72.32 71.40 71.86 e
0.5 74.76 73.92 74.34 d
1.0 77.98 77.73 77.86 c
1.5 81.51 81.33 81.42 b
2.0 86.07 84.88 85.48 a
LSD (0.05) 1.89
Mean 78.53 77.85
Interactions
Y x V NS Y x BR NS
V x BR NS Y x V x BR NS

Means followed by similar letter(s) in column do not differ 
significantly from one another. NS = Non-significant and *, ** = 
Significant at 5 and 1% level of probability, respectively.

Foliar application of brassinolide enhanced plant 
height of tomato plants in all studied varieties. There 
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is substantial evidence that brassinolide play a key role 
in plant’s architecture due it’s influence in regulating 
cell elongation and cell division. Our findings are in 
conformity with Sasse (2003) who investigated the 
role of brassinolide in various physiological processes 
occurring inside the plant including cell division, cell 
expansion, cytodifferentiation and multiple vegetative 
and reproductive attributes. It was concluded that 
exogenous brassinolide application improved various 
developmental pathways in plants and strengthened 
sinks as well as phloem uploading. Brassinolide has 
been reported to significantly improve root and 
shoot growth (Nemhauser et al., 2004) resulting in 
an increased plant height. The enhancement of plant 
height as a result of brassinolide application can also 
be related to efficient vascular differentiation (Ashraf 
et al., 2010; Caño-Delgado et al., 2004), increased 
cell elongation (Catterou et al., 2001) and improved 
chlorophyll content (Gomes, 2011) reported in various 
crop plants. Similar results were obtained by Irfan et 
al. (2017) who observed increased number of leaves, 
plant height, fruit number, and biomass of tomato 
when treated with exogenous foliar brassinosteroid 
application. 

Tomato vegetative and reproductive growth is highly 
influenced by high temperature in fields during the 
summer season. Brassinolide treated tomato plants 
have been reported to accumulate more heat shock 
proteins as compared to non-treated plants which 
resulted in induced thermotolerance as well as 
enhanced photosynthetic efficiency (Singh and Shono, 
2005). Ogweno et al. (2008) also recorded similar 
results with application of brassinolide in alleviating 
photosynthesis inhibition in tomato that resulted due 
to high temperature stress. Improved photosynthetic 
activity was observed with brassinolide treatment 
which protected Rubisco and other enzymes exposed 
to high temperature stress. Nie et al. (2017) studied 
the influence of overexpressing a tomato BRI1 gene 
on various agronomic attributes and concluded that 
brassinolide improved overall vegetative growth 
including increased plant height and lateral roots. 

Number of flowers per cluster and number of flower 
clusters per plant
It is evident from the mean data indicated in Table 
3 that varieties and brassinolide concentrations 
significantly influenced the number of flowers per 
cluster of tomato plants whereas years of plantation 
effect was non-significant. The interaction effects 

of all the treatments were also non-significant. 
Regarding various varieties, Rio Grande resulted in 
highest number of flowers per cluster (5.91) while 
Yaqui plants produced the lowest number of flowers 
per cluster (4.78). Considering various brassinolide 
concentrations, an increase in number of flowers per 
cluster was recorded with an increase in brassinolide 
concentration. Highest number of flowers per cluster 

(5.83) observed in plants with 2ppm brassinolide 
concentration application which was at par with 
(5.80) number of flowers per cluster in plants applied 
with 1.5ppm brassinolide concentration. The lowest 
number of flowers per cluster (4.68) were produced 
in plants with no brassinolide application (Control). 

Table 3: Influence of brassinolide concentrations on 
number of flowers cluster-1 of tomato varieties.

Treatment Years Mean
2017 2018

Varieties
Roma 5.11 5.13 5.12 b
Rio Grande 5.89 5.92 5.91 a
Yaqui 4.78 4.79 4.78 c
LSD (0.05) 0.147
Brassinolide (ppm)
0 4.67 4.69 4.68 c
0.5 4.70 4.75 4.73 c
1.0 5.33 5.29 5.31 b
1.5 5.77 5.83 5.8 a
2.0 5.82 5.84 5.83 a
LSD (0.05) 0.18
Mean 5.26 5.28
Interactions
Y x V NS Y x BR NS
V x BR NS Y x V x BR NS

Means followed by similar letter(s) in column do not differ 
significantly from one another. NS = Non-significant and *, ** = 
Significant at 5 and 1% level of probability, respectively.

Data concerning number of flower clusters per plant 
is shown in Table 4. Number of flower clusters per 
plant of tomato plants was significantly affected by 
varieties, brassinolide concentrations as well as years 
of plantation. The interaction between varieties 
and brassinolide concentrations was significant 
while interactions of all other treatments were not 
significant. Rio Grande resulted in highest number 
of flower clusters per plant (16.95) whereas lowest 
number of flower clusters per plant (14.82) were 
recorded in Yaqui plants. Concerning various 
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brassinolide concentrations, the highest number of 
flower clusters per plant (16.75) was noted in plants 
treated with 1ppm brassinolide concentration while 
the lowest number of flower clusters per plant (15.17) 
resulted in control plants. Number of flower clusters 
per plant increased with increasing brassinolide 
concentration for all varieties but the highest number 
of flower clusters per plant produced in Rio Grande 
plants treated with 2ppm brassinolide concentration 
(Figure 1). Years of plantation has also a significant 
influence on number of flower clusters per plant. 
Highest number of flower clusters per plant (16.00) 
were recorded during the year 2018 as compared to 
(15.86) in 2017.

Table 4: Influence of brassinolide concentrations on 
number of flower clusters plant-1 of tomato varieties.
Treatment Years Mean

2017 2018
Varieties
Roma 15.97 16.07 16.02 b
Rio Grande 16.87 17.02 16.95 a
Yaqui 14.74 14.89 14.82 c
LSD (0.05) 0.185
Brassinolide (ppm)
0 15.07 15.28 15.17 d
0.5 15.59 15.73 15.66 c
1.0 15.63 15.76 15.7 c
1.5 16.71 16.78 16.75 a
2.0 16.31 16.42 16.37 b
LSD (0.05) 0.25
Mean 15.86 b 16.00 a
Interactions
Y x V NS Y x BR NS
V x BR * Y x V x BR NS

Means followed by similar letter(s) in column do not differ 
significantly from one another. NS = Non-significant and *, ** = 
Significant at 5 and 1% level of probability, respectively.

Brassinolide application significantly improved 
number of flowers per cluster and flower clusters 
plant of tomato varieties. Similar results were 
reported by Vardhini and Rao (2011) who carried 
out research experiment to explore the influence of 
brassinolide on growth and development of tomato 
under field conditions. All growth and yield related 
attributes including shoot length, root length, 
number of flowers and fruits per plant as well as fruit 
weight were significantly promoted with exogenous 
brassinolide application. Brassinosteroids are known 

to have direct influence on flowering as well as fruit 
ripening developmental stages (Montoya et al., 
2005; Symons et al., 2006). Pipattanawong (1996) 
investigated the influence of brassinolide foliar 
application on vegetative and reproductive attributes 
of strawberry plants and recorded higher number of 
flowers, number of flower clusters and yield per plant. 

 
Figure 1: Interactive effect of varieties and brassinolide concentrations 
on number of flower clusters plant-1 of tomato.

Brassinolide is known to cause an enhancement 
in ethylene biosynthesis in various crops including 
tomato (Woeste et al, 1999) and Arabidopsis 
(Vardhini and Rao, 2002). Papadopoulou and Grumet 
(2005) also reported similar results while working on 
the influence of exogenously applied brassinolide on 
cucumber plants and concluded that brassinolide 
significantly increased the number of flowers. These 
results are also in conformity with Samira et al. (2012) 
who resulted in higher number of flowers and fruits in 
pepper when applied with brassinolide exogenously. 
Montoya et al. (2005) studied the role of brassinolide 
during fruit development of tomato and noticed an 
increased endogenous brassinolide accumulation in 
early developing tomato fruits. Gomes et al. (2006) 
investigated the influence of foliar brassinolide 
application in yellow passion fruit plants and 
recorded an enhancement in reproductive attributes. 
Similar resulted were obtained by Choe et al. (2001) 
who recorded an improvement in various vegetative 
and reproductive attributes while investigating the 
overexpression of brassinolide biosynthetic genes in 
Arabidopsis. Jangid and Dwivedi (2017) studied the 
physiological and biochemical changes in tomato as 
a result of brassinosteroid treatment and nitric oxide 
and noticed that foliar application of both nitric oxide 
and brassinosteroid resulted in highest number of 
flower clusters per plant in tomato.
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Figure 2: Interactive effect of years and varieties on blossom end rot 
(%) of tomato.

Blossom end rot (%) 
Blossom end rot was significantly affected by different 
varieties and brassinolide concentrations (Table 5). 
Interaction between Year of planting and varieties 
was significant regarding blossom end rot of tomato. 
The year of planting effect and interactions of all 
other treatments were non-significant. Yaqui plants 
showed highest BER percentage (17.86%) while 
lowest percentage of BER (14.96%) was observed 
in Roma plants. BER incidence of tomato plants 
declined significantly with an increase in brassinolide 
level. Mean data regarding various brassinolide 
concentrations revealed that highest BER percentage 
(17.12%) was noted in control plants. The lowest 
BER percentage (15.31%) was observed in plants 
applied with 2ppm brassinolide concentration which 
was at par with that of (15.41%) in tomato plants 
treated with 1.5ppm brassinolide concentration. 
Interaction between year and varieties indicated that 
Roma plants recorded the lowest BER percentage in 
both the years. But the BER percentage was higher 
in Roma plants during the year 2018 as compared to 
Roma plants grown in 2017 (Figure 2).

Figure 3: Interactive effect of varieties and brassinolide 
concentrations on yield (t ha-1) of tomato.

Table 5: Influence of brassinolide concentrations on 
Blossom end rot (%) of tomato varieties.
Treatment Years Mean

2017 2018
Varieties
Roma 14.88 15.05 14.96 c
Rio Grande 15.73 16.24 15.98 b
Yaqui 18.08 17.64 17.86 a
LSD (0.05) 0.235
Brassinolide (ppm)
0 17.12 17.11 17.12 a
0.5 16.96 16.80 16.88 ab
1.0 16.66 16.61 16.63 b
1.5 15.25 15.58 15.41 c
2.0 15.17 15.44 15.31 c
LSD (0.05) 0.26
Mean 16.23 16.31
Interactions
Y x V ** Y x BR NS
V x BR NS Y x V x BR NS

Means followed by similar letter(s) in column do not differ 
significantly from one another. NS = Non-significant and *, ** = 
Significant at 5 and 1% level of probability, respectively.

BER incidence was significantly reduced with 
treatment of tomato varieties with brassinosteroid. 
Low Ca2+  content is believed to be the cause of 
blossom end rot disorder in tomato. Although 
various other factors play a key role in regulating the 
blossom end rot incidence including genes involved 
in Ca2+ transportation, loss of xylem functionality and 
oxidative stress (Ikeda et al., 2017). Brassinosteroids 
are known for their role in enhancing cellular capacity 
to scavenge ROS (Liu et al., 2009) along with enabling 
the plants to tolerate various stress conditions (Maia 
et al., 2018). Brassinosteroid role in mitigating stress 
related issues has widely been discussed in several 
research works (Wu et al., 2017). Exogenously applied 
brassinosteroid act in plants to reduce BER incidence 
by regulating key enzymes including superoxide 
dismutase (SOD), ascorbate peroxidase (APX), and 
catalase (CAT)  in stress conditions which in turn 
lower the Ca2+ disorders (Saure, 2014). Moreover, it 
is widely discussed in multiple research studies that 
Ca2+ deficiency leads to lipid peroxidation and reactive 
oxygen species generation ultimately resulting in 
membrane degradation. Since brassinosteroid has 
the ability to scavenge reactive oxygen species, its 
exogenous application can reduce susceptibility of 
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fruit to BER incidence (Turhan et al., 2006). These 
results are also in accordance with Riboldi et al. (2019) 
who studied the role of brassinosteroid in regulating 
the BER incidence and recorded that brassinosteroid 
treatment resulted in higher soluble Ca2+  and 
antioxidant capacity which ultimately reduced the 
risk on BER incidence up to 44.2%.

Table 6: Influence of brassinolide concentrations on Yield 
(t ha-1) of tomato varieties.
Treatment Years Mean

2017 2018
Varieties
Roma 21.36 21.38 21.37 b
Rio Grande 22.26 22.27 22.27 a
Yaqui 20.65 20.60 20.62 c
LSD (0.05) 0.242
Brassinolide (ppm)    
0 20.49 20.44 20.47 d
0.5 20.96 20.86 20.91 c
1.0 21.44 21.39 21.41 b
1.5 21.99 22.14 22.07 a
2.0 22.23 22.25 22.24 a
LSD (0.05) 0.29
Mean 21.42 21.41
Interactions    
Y x V NS Y x BR NS
V x BR * Y x V x BR NS

Means followed by similar letter(s) in column do not differ 
significantly from one another. NS = Non-significant and *, ** = 
Significant at 5 and 1% level of probability, respectively.

Yield (t ha-1) 
Significant difference was observed among tomato 
varieties and brassinolide concentrations while 
years effect was not significant. Interaction between 
varieties and brassinolide concentration was also 
significant while interactions of all other treatments 
were not significant. Rio Grande plants recorded 
highest yield (22.27 t ha-1), followed by (21.37 t 
ha-1) in Roma, while lowest yield (20.62 t ha-1) was 
obtained in Yaqui plants (Table 6). An increase in 
brassinolide concentration from 0.5 ppm to 2 ppm 
resulted in increased yield of tomato plants. Regarding 
various brassinolide concentrations, the highest 
yield (22.24 t ha-1) was noted in plants applied with 
2ppm brassinolide concentration which was at par 
with (22.07 t ha-1) produced in plants treated with 
1ppm brassinolide concentration. The lowest yield 

(20.47 t ha-1) was recorded in control plants. Yield 
increased with increasing brassinolide concentration 
for all varieties, but the highest yield was noted in 
Rio Grande plants treated with 2ppm brassinolide 
concentration (Figure 2).

In the modern agricultural system, BR-derived 
growth promoting substances can play a great role in 
enhancing crop yield and yield related attributes (Wu 
et al., 2008). My findings indicate that brassinosteroid 
treatment significantly improved crop yield in all 
tomato varieties. This is in conformity with Hayat et 
al. (2012) who observed increased number of fruits 
and fruit yield per plant of tomato by foliar application 
of brassinosteroid under cadmium stress. These 
results might be due to the role of brassinosteroids 
in slowing down senescence process which resulted 
in higher number of fruits in brassinosteroid treated 
plants (Iwahori et al., 1990). Higher yield as a result 
of brassinosteroid application can also be related 
to prolonged attachment of leaves with the plant 
due to slower senescence resulting in higher rate of 
photosynthesis (Hayat et al., 2019)  as well as more 
amount of photo assimilates transfer from source 
organs to sinks (Ali et al., 2006). Jangid and Dwivedi 
(2017) worked on the role of brassinosteroid in 
affecting physiological and biochemical processes 
of tomato and concluded an increase in Superoxide 
dismutase (SOD) activity, lycopene content, fruit 
diameter, percent fruit set, fruit yield and other 
yield related attributes. Irfan et al. (2017) worked on 
foliar application of brassinosteroid to tomato plants 
in order to investigate its role in growth, yield and 
physiological attributes of tomato.
 
Conclusions and Recommendations

Brassinolide application at the rate of 1.5 ppm and 
2 ppm significantly enhanced number of leaves per 
plant, plant height, number of flowers per cluster, 
yield and lowered blossom end rot. Maximum 
number of flower clusters per plant resulted in plants 
treated with 1.5 ppm brassinolide concentration. Rio 
Grande produced highest number of leaves per plant, 
leaf area, plant height, number of flowers per cluster, 
number of flower clusters per plant and yield while 
Roma resulted in lowest blossom end rot percentage. 
Brassinolide application at the rate of 1.5ppm and 
variety Rio Grande is recommended for better 
growth and yield of tomato under the agro-climatic 
conditions of Peshawar. 
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application.
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