
December 2018 | Volume 34 | Issue 4 | Page 994

Sarhad Journal of Agriculture

Research Article

Introduction

Schmidt (1919) was the great innovator of the term 
diallel. However, in this case we are dealing with 

Griffing (1956) method. In two fields, e.g. in plant 
and animal breeding, the modern use of diallel cross 
started with the development of the idea of general 
combining ability(gca) and specific combining abil-
ity (sca) originated by Sprague and Tatum (1942). 
Although most of the work have done in the field 
of design for factorial experiments and varietal tri-
als, but it was not much development in diallel cross 
experiment design, for more detailed study these ar-
ticals; Gupta and Kageyama (1994), Dey and Midha 
(1996), Mukerjee (1997), Das et al. (1998), Kag-
eyama (1998), Bailey et al. (1995). Iqbal et al. (2009), 
Iqbal et al. (2012), Labdi et al. (2015), Harriman and 
Nwammadu (2016), Antoine et al. (2017), Okoro 
and Mbajiorgu (2017) and many others have done 
work in the same type of designing. The analysis of 
diallel cross design based on a fixed effect model for 
diallel analysis which is proposed by Hayman (1954). 

In block designs, the combinatorial study of resolv-
ability have existed since a time in the past and ap-
proaches to the well-known work by Craigen and 
Kharaghani (2007). Most of the work done on re-
solvable design by different author e.g. Reck (2002), 
Sinha (1978), Mukerjee and Kageyama (1985), Ge 
et al. (2008), Abel (2001) etc. A large family of re-
solvable designs was introduced by Williams(1975), 
Patterson and Williams (1976), which they denoted 
as α-designs. Williams et al. (1976) developed resolv-
able designs with two replacements from balanced 
incomplete block (BIB) designs. Baily et al. (1995) 
constructed affine resolvable design for replicate r ≥ 3 
whenever the square of the block size properly divid-
ed by the number of treatments. Pseudo factors were 
used to analyze the data.

Resolvable BIB designs have attained noteworthy 
interest in the statistical and the combinatorial lit-
erature together. In a nutshell, see Morgan (1996), 
who discussed the key modules of resolvable designs 
in lots of orientations. With α-designs, Patterson and 
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Williams (1976) developed an elastic method for 
getting judiciously resourceful resolvable designs for 
replication r, constant block size k and for a various 
values of v. They also reformed their methods with 
two different block sizes, k and k – 1 to find resolv-
able designs. As a practical point of view see John et 
al. (1999) when block sizes are unequal for resolvable 
designs. For instance, Patterson and Hunter (1983) 
had unequal block sizes about half of 245 experi-
ments examined by them. See also Patterson and Sil-
vey (1980), when block sizes need not be equal, the 
literature comprises of no organized work on defining 
optimal resolvable block designs. Morgan and Reck 
(2007) discussed the distinct situation of two blocks 
per replicate. In each replicate with only two blocks, 
necessarily a block be large in the sense of consisting 
at least half of the treatments. And with two blocks 
per replicate, the block sizes should not be equal for 
any odd v or not odd v.

The paramount of interest in this communication 
is to investigate new designs for complete diallel 
cross (CDC) design by using resolvable BIB design 
for some specific values of v, b and k. This paper is 
managed in this way like as. The method of resolvable 
design, CDC design and cyclic method of shifts are 
briefly described in section 2. How we obtain efficien-
cy of designs also discuss here. In section 3, The meth-
od of cyclic shifts is explained through example to 
construct resolvable BIB designs, furthermore, these 
resolvable BIB designs used to construct new CDC 
designs alongwith MS-optimal criterion by Shah 
(1960), Eccleston and Hedayat (1974). The conclud-
ing remarks appear in Section 4.

Materials and Methods

Resolvable design
A block design is assumed to be resolvable if the 
blocks are alienated into replicates, described as sets 
of blocks with the condition that each treatment is 
assigned to one unit in each set. The realistic impact 
of, and motivation for, resolvability is to get orthogo-
nality between concerned nuisance factors and treat-
ments. Alternatively, a BIB design is called resolvable 
if the blocks of the BIB design can be partitioned into 
r groups such that each group contains each of the v 
treatments exactly once. Undoubtedly b/r = x, where x 
is the number of blocks in each resolvable group. 

In a resolvable design the v = kx treatments are arranged 

in r resolvable groups (i.e. equal to no. of repliations) 
of x blocks and each block containing k plots. Within 
each group, each treatment is replicated one time. 
Resolvable blocks designs, are known as special type 
of the lattics designs, for selected restricted numbers 
of treatments and block sizes. Square lattices have 
k=x, whereas for rectangular lattices k = x-1. 

The methods of shifts, which is introduced by Iqbal 
(1991) can also be used to obtain many resolvable 
designs. He also gives.
 

 		      .....(1)

which shows each pair occur λ time. Clatworthy (1973) 
present a catalogue which shows the resolvability of 
group-divisible designs and other partially balanced 
incomplete block (PBIB) designs with two associate 
classes. However, above mentioned designs are 
generally lattic designs or less efficient alternatives. 

Series 1 By Gupta and Kageyama (1994), “Let p is 
even, take D as p - 1 replications of the complete 
block in p treatments. Then there exists a resolvable 
balanced incomplete block design Dn with block size 
2 and λn = 1 which is nested within D”.

Diallel cross design
In animal and plant procreation experiments, design 
of experiments for diallel crosses is taken under 
consideration to find the genetic properties of inbred 
lines. Srivastav and Shankar (2007) described the 
terminology and notation and the same was adopted 
in the present study. In the terminology and notation 
of them, think about a group of p parental lines(i.e. 
v treatments), and assume a diallel cross between 
parental lines i and i′ be denoted as i× i for i< i′ = 0, 
1, 2, … , p-1. A diallel cross design is known as CDC 
if it takes each of the v′ = p(p-1)/2 distinct crosses. 
Griffing (1956) referred a CDC design as type IV 
mating design. Think about an arrangement of diallel 
crosses with p parental lines locate in b blocks, with 
each block containing k′ <v′ crosses such that:

•	 Each value of p occurs in exactly w crosses. 
•	 Each value of p occurs less than or equal to one in 

any single block. 
•	 Each cross occurs in exactly l blocks. 
•	 Each pair of p occurs in exactly λ blocks, after 

ignoring crosses. 
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•	 These designs will be labeled as BIBDC(p, b′, w, 

k′, λ ,l) i.e. BIB design and refer to as BIBDCs. 
The necessary conditions for BIBDCs can easily 
be established as:

Efficiency of diallel cross design
Theorem 1 By Ghosh and Das (2003), Let  
be a diallel cross design, and assume  satisfies

•	  and
•	  is completely symmetric in the sense that 

 has all its diagonal elements equal and all its 
off-diagonal elements equal.

Where; n is crosses (in our paper total number of 
crosses is denoted by v′), p is parental line,  for 
more detail see Ghosh and Das (2003). Then  is 
A-optimal in D (p, n).

In another way, Shah (1960), Eccleston and Hedayat 
(1974) introduced the MS-optimal to locate families 
of efficient designs and optimal mating design.

Results and Discussion

Here, we consider the construction of CDC designs 
by resolvable BIB designs. New proposed designs giv-
en in Table 3. 

Table 1: Replication for Resolvable Design.
Replicate 1 2 3
Block 1 3 2 4 5 6

0 2 1 3 0 1
1 3 2 0 2 3

Example 1
Construct resolvable balance incomplete block design by 
method of cyclic shifts
In Table 3 we gave the sets of shifts which used to 
construct resolvable BIB designs. Where the set of 
shifts developed by method of cyclic shift, which is 
introduced by Iqbal (1991). In the last column of 
Table 3, the index numbers of the blocks in each 
design which contain complete replicates are given 
by us. Consequently, for instance, construct resolvable 
BIB design consider first design of Table 3, then make 

a Table 1 as, Blocks 1 and 3 form a complete replicate 
and Blocks 2 and 4 form a complete replicate and 
Blocks 5 and 6 form a complete replicate. We use 
these resolvable BIB designs to construct CDC design.

v =4, k = 2, r = 3, b = 6, sets of shifts [1] + [2]1/2
v =4, k = 2, r = 3, b = 6, sets of shifts [1] + [2]1/2

Design 1
0 1 2 3 0 1
1 2 3 0 2 3

By using Equation (1)

This design is BIB design because λ = 1, λ = 1 mean 
each treatment pair occurs one time. 

Table 2: Replication for Resolvable Design.
Replicate 1 2 3 4 5 6 7
Block 1 11 2 12 3 13 4 14 5 8 6 9 7 10

0 3 1 4 2 5 3 6 4 0 5 1 6 2
1 5 2 6 3 0 4 1 5 2 6 3 0 4
2 6 3 0 4 1 5 2 6 3 0 4 1 5
4 7 5 7 6 7 0 7 1 7 2 7 3 7

Converting into resolvable balance incomplete block design 
Index number of blocks which contain complete rep-
licates (1,3), (2,4), (5,6).

This can be converted in Table 1 to form replicate 
like as Here index number of blocks (1,3), (2,4), (5,6) 
define as Block 1 and 3 make complete set, Block 2 
and 4 make complete set and Block 5 and 6 make 
complete set.

Converting resolvable balance incomplete block design 
into complete diallel cross design
Now making all possible pair wise crosses within the 
treatment within each block. In the above design, 
there is 6 crosses, each cross replicated equal number 
of time say once, which are given below.

(0×1) (2×3) (1×2) (3×0) (0×2) (1×3) 

It fulfill all the properties of CDC design which is 
described by Srivastav and Shankar (2007). This 
design is MS-optimal.
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Table 3: Resolvable balanced incomplete block design and diallel cross design.
Parameters of Resolvable Balanced Incomplete Block Design Parameters of 

Complete diallel 
cross design

V k R b x Set of shifts Index number of blocks which contain complete replicates v/ k/ b/ λ
4 2 3 6 2 [1] + [2]1/2 (1,3), (2,4), (5,6) 6 1 6 1
6 2 5 15 3 [1]+[2]+ [3]1/2 (1,9,10),(3,11,12), (5,7,8), (2,4,6), (13,14,15) 15 1 15 1
6 3 10 20 2 [1,1]+ [1,2] + 

[3,2] + [2,2]1/3
(1,4),(2,5),(3,6),(7,18),(8,13),(9,14),…,(12,17),(19,20) 15 3 20 4

8 2 7 28 4 [1]+[2]+[3]+[4]1/2 (1,3,5,7),(2,4,6,8),(9,10,13,14),(11,12,15,16),(17,19,21,23), 
(18,20,22,24),(25,26,27,28)

28 1 28 1

8 4 7 14 2 [1,1,2]+[2,1]t (1,11),(2,12),(3,13),(4,14),(5,8),(6,9),(7,10) 28 6 14 3
9 3 4 12 3 [1,2]+[4(1/2)]t (1,5,11),(2,6,12),(3,7,9), (4,8,10) 36 3 12 1
10 2 9 45 5 [1]+[2]+[3]+[4]+

[5]1/2
(1,13,14,17,18),(2.25.26.37.40),(3,5,7,19,20),(4,27,28,32,39),(
6,29,30,31,34,),(8,21,22,33,36),(9,11,12,15,16),(10,23,24,35,3
8), (41,42,…,45),

45 1 45 1

12 2 11 66 6 [1]+[2]+[3]+[4]+ 
[5]+[6]1/2

(1,3,41,…,44),(2,52,…,56),(4,6,10,12,51,57),(5,11,39,40,45,
46),(7,9,37,38,47,48),(8,49,50,58,59,60),(13,14,17,18,21,22),
(15,16,19,20,23,24),(25,26,27,31,32,33), (28,29,30,34,35,36), 
(61,…,66)

66 1 66 1

12 3 11 44 4 [1,1]+[3,3]+[4,4]+
[5,5]2/3

(1,4,7,10),(2,5,8,11),(3,6,9,12),(13,17,21,38),(14,18,22,39),(15
,19,23,40),(16,20,24,37),(25,29,33,44),(26,30,34,41),(27,31,35
,42),(28,32,36,43)

66 3 44 2

12 4 11 33 3 [1,2,4] + [1,2,5] + 
[1,2]t

(1,14,28),(2,15,29),…,(6,19,33),(7,20,23),(8,21,24),(9,22,25),(
10,12,26),(11,13,27)

66 6 33 3

12 6 11 22 2 [1,1,2,1,2]+
[3,2,1,1,]t

(1,15),(2,16),…,(8,22),(9,12),(10,13),(11,14) 66 15 22 5

14 2 13 91 7 [1]+[2]+[3]+[4]+
[5]+[6]+[7]1/2

(1.6.9.36.68.69.70),(2.7.23.24.83.84),(3,5,11,21,22,27,28),(4,8
,10,12,14,44,45),(13,71,…,76),(15,30,37,46,52,62,77),(16,31,3
8,47,53,63,78),(17,32,39,48,54,64,79),(18,33,40,49,55,65,80),
(19,34,41,50,56,66,81),(20,355,42,43,51,67,82),(25,26,57,…,6
1),(85,…,91),

91 1 91 1

15 3 7 35 5 [1,3]+[2,6]+
[5,5]1/3 

(1,6,11,33,34),(2,22,23,26,27),(3,5,10,12,30),(4,24,25,28,29),(
7,13,16,19,35),(8,14,17,20,31),(9,15,18,21,32)

105 3 35 1

16 2 15 120 8 [1]+[2]+[3]+[4]+
[5]+[6]+[7]+
[8]1/2

(1,3,…,15),(2,4,…,16),(17,18,23,24,27,28,95,96),(19,20,87,…,
92),(29,30,81,…86),(33,34,48,70,…,74),(21,22,25,26,31,32,93
,94),(35,36,40,41,42,46,47,80),(37,38,39,75,…79),(43,44,45,6
5,…69),(49,…,52,57,…60),(53,…,56,61,…164),(97,99,…,111
),(98,100,…,112),(113,…,120).

120 1 120 1

16 4 5 20 4 [1,2,4]+{[55]1/3}t (1,6,11,20),(2,7,12,16),(3,8,13,17),(4,9,14,18),(5,10,15,19). 120 6 20 1
16 8 15 30 2 [1,1,1,2,2,1,3]+

[2,3,1,2,1,1]t
(1,20),(2,21),…(11,30),(12,16),(13,17),…,(15,19) 120 28 30 7

18 2 17 153 9 [1]+[2]+[3]+[4]+
[5]+[6]+[7]+[8]
+[9]1/2

(1,13,26,27,123,…,126,147),(2,4,…,18),(7,135,…,14
2),(17,127,…,134),(22,23,116,…,122),(19,20,28,29,1
49,…,153),(24,25,30,31,88,89,90,145,146),(33,34,109-
,…,115),(37,38,39,97,…,102),( 40,41,42,46,47,48,52,53,54),(4
3,44,45,403,…,108),(49,50,51,91,…,96),(55,70,71,72,78,…,82
),(57,…,60,83,…,87),(65,…,68,73,…,77)

153 1 153 1

Example2 
Construct resolvable balance incomplete block design by 
method of cyclic shifts
The established two set of shifts for v=8, k=4, r=7, b=14, 
used to construct the original design for v=8, k1=4 and 

k2=3, is [1,1,2] and [2,1] given in Table 3. This explain 
as that the blocks of size 4 are obtained by combining 
the blocks obtained using shift [1,1,2,2], [2,1] t. We 
note that for [2,1]t, treatment 7 has been added to each 
block of the smaller design according Iqbal (1991). 
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Design 2
0 1 2 3 4 5 6 0 1 2 3 4 5 6
1 2 3 4 5 6 0 2 3 4 5 6 0 1
2 3 4 5 6 0 1 3 4 5 6 0 1 2
4 5 6 0 1 2 3 7 7 7 7 7 7 7

Converting into resolvable balance incomplete block design 
Index number of blocks which contain complete rep-
licates (1,11), (2,12), (3,13), (4,14), (5,8), (6,9), (7,10) 
This can be converted in Table 2 to form replicate like as.

Converting resolvable balance incomplete block design 
into complete diallel cross design
Now making distinct crosses in each block accord-
ing to our scheme, we get ½ k(k-1)=6 crosses in each 
block. Thus, we get ½bk (k-1= 84 arranged in b=14 
blocks. Now we get CDC design with parameters 
v/= ½ p (p-1=28, b/=b, k/ = ½ k(k-1).

Blocks Treatments (Crosses)
1 0×1 0×2 0×4 1×2 1×4 2×4
2 1×2 1×3 1×5 2×3 2×5 3×5
3 2×3 2×4 2×6 3×4 3×6 4×6
4 3×4 3×5 3×0 4×5 4×0 5×0
5 4×5 4×6 4×1 5×6 5×1 6×1
6 5×6 5×0 5×2 6×0 6×2 0×2
7 6×0 6×1 6×3 0×1 0×3 1×3
8 0×2 0×3 0×7 2×3 2×7 3×7
9 1×3 1×4 1×7 3×4 3×7 4×7
10 2×4 2×5 2×7 4×5 4×7 5×7
11 3×5 3×6 3×7 5×6 5×7 6×7
12 4×6 4×0 4×7 6×0 6×7 0×7
13 5×0 5×1 5×7 0×1 0×7 1×7
14 6×1 6×2 6×7 1×2 1×7 2×7

It fulfill all the properties of CDC design which is 
described by Srivastav and Shankar (2007). This 
design is MS-optimal also.

Conclusions and Further Suggestions

Srivastav and Shankar (2007) described the terminol-
ogy and notation of diallel cross design. Yalew and 
Sharma (2010) used the same terminology for the 
construction and analysis of complete diallel cross. 
A complete diallel cross design referred as type IV 
mating design by Griffing (1956). In this paper, we 
proposed new methods for the construction of dial-

lel cross design which is known as method of cyclic 
shifts.
 
The current study concluded that we constructed the 
auxiliary design for diverse set of treatment v and 
block size k through method of cyclic shifts, after that 
we obtained resolvable BIB design and finally these 
resolvable BIB design used to construct complete di-
allel cross design which fulfil the properties of CDC 
design. After that, we also checked that these diallel 
cross designs are MS-optimal. 

The important aspect of the method of cyclic shifts is 
that the properties of a design can be obtained from 
the off-diagonal elements of the concurrences matrix 
without constructing the actual blocks of the design.

To come across the detail that how the technique of 
cyclic shifts is of use for developing other experimental 
designs, the researcher may refer to Iqbal and Tahir 
(2009).
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