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Introduction

Rice is among three leading crops of the world 
with wheat and maize which is largely grown and 

widely used. Nearly 88% of the global rice is cultivated 
in Asian countries (Mostafa et al., 2016; Behzad et 
a., 2019), where 2.4 billion population intake rice as 
regular food. According to recent estimates, China 
was the leading country with 211 million tons of rice 

production throughout the world (Raza et al., 2018a). 
The rice area is decreasing due to fastest growth in 
urbanization (Gillani et al., 2019) that occurred in 
recent decades. This urbanization has eaten up very 
fertile rice lands while the rice demands is expected 
to be 875m tons up to 2030 (Huang et al., 2002). Rice 
cultivation is dependent upon a variety of parameters 
including crop phonology, anthropogenic activities 
and physician characteristics of soil (Raza et al., 2018b).
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A worldwide survey authenticates that 87% of rice 
farms are under cultivation by individuals who have 
small lands (Nagayet, 2005). These cultivators face 
big challenges to achieve targeted yield e.g., worst 
weather events, pest attacks, water stress (Saifulla 
et al., 2019) and the market fluctuations in term of 
income security (Morton, 2007; O’Brien et al., 2004). 
Other hostile scenarios like, uneven distribution of 
rainfall, glacial retract and a rise in sea level, droughts 
and storm surges are the main reasons to intensify the 
risks of yield degradations (Parry et al., 2007). Asian 
countries are commonly affected by these climatic 
events (Mendelsohn, 2009). The abruptly changing 
environment (Hassan et al., 2019) has applied a huge 
pressure on small farmers to produce healthy to cater 
the demands of masses (Raza, 2018c). Therefore, 
it is significant to predict the net production that 
make capable to agronomists to estimate the exact 
quantity that can be imported or exported. This 
technique is good to tackle food crisis well in time 
(Sandhu et al., 2019). Yield estimation is therefore 
viable to eliminate the impact of these challenges by 
reducing production losses and increasing per hector 
yield (Mindra, 2011; Shannon, 2015; Raza, 2018a; 
Swain, 2014). Estimation of area yield has become a 
challenging factor to achieve promised yield therefore 
it is attractive to agri-industry and farmers (Miranda, 
2011). AYIC is based on historic crop yield records. 
The availability of historic crop related datasets is 
limited in rice producing countries like Pakistan, 
India and Bangladesh etc. that is a constrain to 
implement AYIC (Miranda, 2012). Historic datasets 
regarding crop production, are of great importance 
due to their unbiased and replicable nature that are 
used to achieve accurate yield by their integration 
with remote sensing data (Fang et al., 2008). 

There are many methods available to evaluate the 
rice yield but the most commonly used method is 
to generate a relationship of rice crop response and 
the historical yields. The main theme is creation 
of relation of yield with crop photosynthesis 
capacity. NDVI and RVI verifies that the amount 
of photosynthetic activity is responsible for biomass 
generation and is captured by spectral responses 
(Prasad et al., 2007). 

In Pakistan, field surveys are conducted by field 
officers in their area of commands in collaboration 
with staff of CRS department as a joint venture of 
irrigation and agriculture department. Final estimates 

are approved by Agriculture, Irrigation, P&D and 
Revenue departments and are made public after the 
crop cultivation.

This research aim at evaluating the net rice production 
for upcoming year 2019 using historic crop related 
records saved by Punjab CRS department in 
collaboration with open source satellite imagery. It 
also aimed at describing the efficiency and reliability 
of satellite images in comparison to ancient ways 
of crop monitoring using a large man power with 
wastage of time. 

Materials and Methods

Study site
The investigation site consists of major rice yielding 
regions of Punjab province in Pakistan including 
Lahore, Sheikhupura, Nankana Sahib, Gujranwala 
and Hafizabad. The investigation site is famous 
around the world to produce high quality of rice. 
This region fall on the way of monsoon therefore, it 
receives a large amount of rainfall which is more than 
500 mm. The map of study area is drawn in Figure 1. 

Figure 1: Map of Punjab province in Pakistan.

Experimental design
The “Step by Step” methodology is mapped in Figure 
2. In the first step we downloaded satellite images as 
captured by various Landsat satellites for the duration 
from 2008 to 2018 and computed NDVI and RVI 
values for each year. The area/yield records related 
to rice crop as preserved by CRS department were 
also acquired. The regression analysis applied to 
satellite compute and the CRS reported yield values 
and generated regression equations. These regression 
equations were further used to compute rice yield 
because these equations are showing a trend. We used 
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supervised classification for estimation of rice area 
precisely. The flow of research is mentioned in Figure 2. 

Yield estimation through field surveys by interviewing 
farmers is commonly used worldwide. In this method, 
the field trips are conducted seasonally for each 
cluster site throughout the country. Agronomists 

along with field staff, surveyed all plots many time for 
monitoring all crop growth/yield limiting parameters 
e.g., light use efficiency, insect’s activity and the water 
intake level by a particular crop (Motha, 2015). The 
computed parameters are essential to compute per 
hector yield.

Figure 2: Flow of methodology
.
Consecutive filed surveys are also used as an alternative 
method of crop monitoring and yield estimation by 
selecting some sites (Swain, 2014). The results obtained 
through these sites are used as primary data and are 
applied to the whole study site to estimate the crop 
yield (Bala et al., 2008). This technique of estimation 
of yield may result into various drawbacks such as, 
it is cost effective and time-consuming method, the 
outcomes are shared after many months of harvest of 
a crop that is not usable at that time (Noureldin et al., 
2013). This mechanism has no ability to cover large 
areas efficiently.

In comparison to above discussed methods of yield 
estimation, remote sensing provides real time, 
georeferenced temporal datasets which are highly 
reliable and easy to handle. These datasets are widely 
used throughout the world to predict the crop yield 
and to map crop area accurately (Rahman et al., 
2009). Satellite technology can give efficient results 
because it provides pixel-based information for 
large geographies. The satellite imagery is available 
sometime free (i.e., Landsat and MODIS etc.) and the 
large areas are covered with high temporal resolution.
Various spectral bands mounted in satellites are 
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capable to record the spectral reflectance of crop 
canopies which can be used to monitor crop health. 
(Gortan, 1993; Hunge et al., 2013; Rahman et 
al., 2009). Biomass generation of each day can be 
evaluated using temporal responses of these spectral 
bands. The combinations of spectral bands are 
useful to apply vegetative indices for estimation of 
crop related parameters. The vegetative indices were 
developed to compare red and infrared bands because 
maximum chlorophyll absorption occur in visible 
band as compared to maximum reflection in NIR 
(Lee et al., 2000).

RVI is a vegetative index used to highlight vegetation 
as compared to other feature e.g., soil, snow or water. 
However, the NDVI is commonly used to determine 
the spectral responses for rice crop. NDVI and RVI 
are computed using Equations 1 and 2 (Bunkei 
Matsushita et al., 2007; Nabi et al., 2019). 

We acquired open source imagery (Landsat data) 
from United States Geological Survey (USGS) of the 

complete duration, mentioned in Table 1, 2. Most of 
Landsat imagery is comprised with pixel size of 30m 
and a 16 days temporal window ( Jeffery et al., 2001).

Table 1: Image acquisition dates of Landsat 5,7 along 
with solar angle, quantized calibrated digital number 
and the total spectral radiance of Band 3 and Band 4.
S. 
No

Satellite Date Band 
3

Band 
4

Band 
3

Band 
4

Solar 
Angle θ

1 Landsat 5 23-Jul-08 264 221 -1.17 -1.51 63.24
2 Landsat 5 25-Sep-08 264 221 -1.17 -1.51 50.33
3 Landsat 5 28-Nov-08 264 221 -1.17 -1.51 32.57
4 Landsat 5 10-Jul-09 264 221 -1.17 -1.51 65.05
5 Landsat 5 12-Sep-09 264 221 -1.17 -1.51 54.66
6 Landsat 5 15-Nov-09 264 221 -1.17 -1.51 30.59
7 Landsat 5 27-Jun-10 264 221 -1.17 -1.51 66.41
8 Landsat 5 30-Aug-10 264 221 -1.17 -1.51 57.89
9 Landsat 5 2-Nov-10 264 221 -1.17 -1.51 39.61
10 Landsat 5 1-Aug-11 264 221 -1.17 -1.51 62.71
11 Landsat 5 18-Sep-11 264 221 -1.17 -1.51 53.02
12 Landsat 5 13-Nov-

2011
264 221 -1.17 -1.51 36.99

13 Landsat 7 10-Jul-12 234 241 -5 -5 66.25
14 Landsat 7 28-Sep-12 234 241 -5 -5 50.86
15 Landsat 7 15-Nov-12 234 241 -5 -5 36.48

Table 2: Image acquisition dates of Landsat 8 along with multiband reflectance of Band 4 and Band 5.
  Satellite   Reflectance 

Multiband B4
Reflectance 
Additive B4

Reflectance 
Multiband B5

Reflectance 
Additive B5

Solar 
Elevation θ

16 Landsat 8 19-Jun-13 0.00002 -0.1 0.00002 -0.1 68.65
17 Landsat 8 23-Sep-13 0.00002 -0.1 0.00002 -0.1 53.19
18 Landsat 8 26-Nov-13 0.00002 -0.1 0.00002 -0.1 34.46
19 Landsat 8 22-Jun-14 0.00002 -0.1 0.00002 -0.1 68.62
20 Landsat 8 26-Sep-14 0.00002 -0.1 0.00002 -0.1 52.29
21 Landsat 8 29-Nov-14 0.00002 -0.1 0.00002 -0.1 33.82
22 Landsat 8 25-Jun-15 0.00002 -0.1 0.00002 -0.1 68.35
23 Landsat 8 29-Sep-15 0.00002 -0.1 0.00002 -0.1 51.28
24 Landsat 8 2-Dec-15 0.00002 -0.1 0.00002 -0.1 33.33
25 Landsat 8 27-Jun-16 0.00002 -0.1 0.00002 -0.1 68.43
26 Landsat 8 1-Oct-16 0.00002 -0.1 0.00002 -0.1 50.46
27 Landsat 8 4-Dec-16 0.00002 -0.1 0.00002 -0.1 32.88
28 Landsat 8 14-Jun-17 0.00002 -0.1 0.00002 -0.1 68.42
29 Landsat 8 18-Sep-17 0.00002 -0.1 0.00002 -0.1 52.22
30 Landsat 8 21-Nov-17 0.00002 -0.1 0.00002 -0.1 31.78
31 Landsat 8 1-Jun-18 0.00002 -0.1 0.00002 -0.1 67.85
32 Landsat 8 5-Sep-18 0.00002 -0.1 0.00002 -0.1 50.82
33 Landsat 8 8-Nov-18 0.00002 -0.1 0.00002 -0.1 31.12
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 The image acquisition dates were according to the rice 
growth duration e.g., germination, transplantation, 
panicle primordia initiation, milky dough and the 
harvest stages (Mkhabela et al., 2011). The species 
other than rice were observed less than 1% in 
various field surveys. The complete information of 
downloaded images is listed in Table 1 and Table 2.

Scan Line Corrector (SLC) of Landsat 7 stopped 
working on May 31, 2003 that resulted in missing 
strips. A complete scene of Swath with 185 km2 had 
22% data missing. The missing data was recovered 
by comparing it with natural imagery using nearest 
neighborhood techniques.

Geometric corrections are related to the variations 
in spatial location of various features mapped by 
satellite imagery in comparison to their actual 
positions on the surface of earth. Geometric 
corrections are significant to perform to cross 
match the geographic locations of various features 
in satellite image with real world. For this, we 
demarcated major features e.g., river crossings the 
GT road with actual locations using differential 
global positioning system. 

TOA calculation provides noise free datasets to 

obtain accurate results. TOA calculations give more 
appropriate results in comparison to the method 
of atmospheric corrections. The algorithm of TOA 
calculation is not similar for all the satellite e.g., The 
TOA generation for Landsat 5, 7 is described in 
Equations 3 and 4.

Where the parameters in Equation 3, 4 are tracked 
from metadata attached to a particular image and 
spectral radiances are denoted as Lmax and Lmin. Qmax 
and Qmin are quantized calibrated digital number 
and L is the total spectral radiance recorded in 
watt/m2. In Equation 4 δλ is TOA reflectance Esun 
is exo-atmospheric irradiance, Lλ is the spectral 
radiance at the sensor’s aperture [W∕ðm2 sr μm], d 
is the distance of earth from sun, π is the constant 
having value 3.14 and θ is solar elevation recorded 
in decimal degreed.

The specific method to compute TOA reflectance 
for Landsat 8 is mentioned Equations 5, 6.

Table 3: District wise area and yield values as reported by CRS for the years 2008-2018.
Years 2008 2008 2009 2009 2010 2010 2011 2011 2012 2012 2013 2013
District Area 

(ha)
Yield 
(ton/ha)

Area  
(ha)

Yield 
(ton/ha)

Area  
(ha)

Yield 
(ton/ha)

Area  
(ha)

Yield 
(ton/ha)

Area  
(ha)

Yield 
(ton/ha)

Area 
(ha)

Yield 
(ton/ha)

Lahore 43800 1.90 34000 1.85 32800 1.81 32000 1.74 28700 2.26 38030 1.88
Gujranwala 249200 1.99 248000 2.21 241200 2.1 249300 2.2 247300 2.33 248880 2.19
Hafizabad 130300 1.89 133000 2.1 127100 2.1 126300 1.99 271900 2.11 132740 2.25
Nankana Sb 114600 1.84 102000 1.80 96300 1.8 97500 1.79 96300 1.94 103600 2.22
Sheikhupura 184500 1.68 206000 1.80 202300 1.7 206800 1.78 205600 1.71 196270 1.97
Total Area 722400 723000 699700 711900 706600 719520
Average Yield 1.86 1.95 1.9 1.89 2.07 2.012
Years 2014 2014 2015 2015 2016 2016 2017 2017 2018 2018
District Area  

(ha)
Yield 
(ton/ha)

Area  
(ha)

Yield 
(ton/ha)

Area  
(ha)

Yield 
(ton/ha)

Area  
(ha)

Yield 
(ton/ha)

Area  
(ha)

Yield 
(ton/ha)

Lahore 40470 2.15 34800 2.08 32380 1.96 31960 1.98 34000 1.95
Gujranwala 238360 2.18 225000 2.35 222570 2.36 220950 2.21 226620 2.09
Hafizabad 123020 2.12 133550 2.30 133540 2.33 129000 2.62 136370 2.34
Nankana Sb 108860 2.25 112100 2.12 106420 2.16 102790 2.2 111690 2.17
Sheikhupura 200310 1.96 172390 2.13 171180 2.04 171180 2.0 180900 2.07
Total Area 711020 677840 666090 655880 689580
Average Yield 2.13 2.19 2.092 2.2 2.12
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Where;
θ is the solar angle in Equations 5, 6 and other factors 
were obtained from metadata of Landsat 8 images.

Crop related historical datasets saved by CRS 
department are of great importance. We obtained 
area under rice cultivation in km2 and the annual rice 
yield for the years 2008 to 2018 as published by CRS 
department in Table 3.

A 15-band composite was generated by applying layer 
stack utility e.g., the 15-band composite for the year 
2008 was composed with (5 spectral bands obtained 
using satellite image of 2008, 5 of September and 
November 2008). Figure 3 is showing the composite 
scheme consist of 15 spectral bands. This composite 
provides efficient classification results because this 
composite provides the integrated impact of all stages 
of rice plant growth.

The strategy developed in Figure 3 was applied on 
both satellite systems Landsat 5, 7 and Landsat 8. In 
case of Landsat 5, 7, we used bands 1-5 covering the 
visible and infrared wavelengths of electromagnetic 
spectrum. Similarly, we used Bands 2-6 of Landsat 8 
in visible and infrared wavelength ranges to develop 
the 15 Bands composite as described in Figure 3. 

Figure 3: A composite containing 15 bands.

The predicted values in comparison to actual values are 
well defined by RMSE. In this research, the historical 
datasets are the observed values. Mathematically, 
where Pi and Oi are predicted and observed values 
respectively. The value of RMSE is ideal (Siyal et al., 

2015).

The underestimation or overestimation in datasets 
can be predicted by MBE. It is an efficient tool to 
determine biasness in the input data. A negative 
MBE describe the amount of underestimation for 
predicted values. Mathematically (Siyal et al., 2015).

ME give the integrated impact of RMSE and MBE 
that defines the accuracy in a model. Mathematically 
(Willmott, 1982).

Results and Discussion

The spectral bands in NIR and Red wavelengths of 
Landsat 5,7 and 8 are selected to calculate NDVI and 
RVI values. We selected the images of September 
only because the highest NDVI and RVI values can 
be achieved in September. TOA based datasets were 
obtained by converting pixel based DN values of all 
spectral datasets using Equations 3 and 4 for Landsat 
5,7 and the Equations 5 and 6 for Landsat 8. We 
computed annual variations in NDVI and RVI values 
and listed the results in Table 4. The annual yield 
values acquired from CRS Punjab department from 
2008-2018 are also listed in the Table 4.

Table 4: RVI and NDVI values recorded in September 
for the years 2008-2018 to compute the CRS based yield.
S. No. Date NDVI RVI CRS based Yield
1 25-Sep-08 0.67 3.63 1.86
2 12-Sep-09 0.69 4.02 1.95
3 30-Aug-10 0.66 3.52 1.9
4 18-Sep-11 0.68 3.49 1.89
5 28-Sep-12 0.72 4.16 2.07
6 23-Sep-13 0.71 3.97 2.012
7 26-Sep-14 0.73 4.4 2.13
8 29-Sep-15 0.74 4.65 2.19
9 15-Sep-16 0.76 4.62 2.12
10 18-Sep-17 0.73 4.75 2.2
11 5-Sep-18 0.72 4.76 2.05



September 2019 | Volume 35 | Issue 3 | Page 961

Sarhad Journal of Agriculture
The linear regression applied to CRS yield records 
against NDVI values is mentioned in Figure 4. Figure 
4 is showing a strong relation between these variables 
having a coefficient of determine R2= 0.8239. 

Figure 4: Linear regression applied to NDVI values and the CRS 
reported yield.

We generated an equation to compute NDVI based 
yield for coming years.

Similarly, a regression analysis of CRS based yield 
with RVI values is mapped in Figure 5. A regression 
equation was also generated as Equation 11, which 
shows a fair relationship between RVI values and the 
annual yield having R2= 0.817.

The satellite derived yield values were computed as 
mentioned in Table 5.

Table 5: Yield estimation using satellite datasets for the 
years 2008-2018 using annual NDVI and RVI values.
Date NDVI RVI Yield (ton/ha) 

using NDVI
Yield (ton/ha) 
using RVI

25-Sep-08 0.67 3.63 1.89 1.91
12-Sep-09 0.69 4.02 1.96 2.00
30-Aug-10 0.66 3.52 1.86 1.89
18-Sep-11 0.68 3.49 1.93 1.88
28-Sep-12 0.72 4.16 2.07 2.03
23-Sep-13 0.71 3.97 2.03 1.99
26-Sep-14 0.73 4.4 2.10 2.08
29-Sep-15 0.74 4.65 2.14 2.14
15-Sep-16 0.76 4.62 2.21 2.13
18-Sep-17 0.73 4.75 2.10 2.16
5-Sep-18 0.72 4.76 2.07 2.16

The regression analysis of both yield values (RVI 
and NDVI based) is mapped in Figure 6 which were 
found in strong correlation with R2 = 0.7882. This 
values of R2 allow us to choose an Equation 10 or 
11 for estimation of yield for 2019 but we proceeded 
our task with Equation 10 due to high interactivity, 
reliability and global coverage/usage of NDVI. This 
index in depth while RVI is commonly used to 
delineate vegetation in comparison to other features 
e.g., water, snow or soil textures.

Figure 5: Linear regression applied to RVI values and the CRS 
reported yield.

Figure 6: Relationship between NDVI and RVI based yield values.

Estimation of rice area
To delineate the rice areas for the years 2008 to 
2018, the algorithm of supervised classification was 
applied. Supervised classification is not capable to 
discriminate between various species such as grass 
and crop which consider grass in account of crop 
areas. A satellite image was obtained which recorded 
the study site just before the germination of rice. This 
image highlighted the species other than rice and were 
considered as non-rice areas. The weightage of these 
non-rice areas was less than 1% which was subtracted 
to estimate the exact extent of rice plantations in km2. 
The rice cultivations were extracted using supervised 
classification is mapped in Figure 7.
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Figure 7: Spatio-temporal extent of rice cultivation from 2008-
2016.

Figure 7 is showing the 11-sample site using satellite 
imageries to map the rice area for the complete study 
period, where the green area represents the rice crop 
whereas the light/dark blue are is showing non rice 
features e.g., water and the human settlements in the 
study site. 

Figure 8: A comparison of rice areas.

The CRS reported rice areas were compared with 
satellite derived areas. The satellite derived area was 
in exaggeration in comparison to actual areas which 
represents that the Landsat imagery had coarse 
resolution which may incorporate the rice cropping 
along roads in account of features other than 
vegetation. However, other high-resolution datasets 
e.g., the products of world-view, Quick bird and Geo-
Eye provide improved classification results however, 
these imageries may result in big economical cost for 
such large areas more than 75000 ha. Satellite derived 
areas along with CRS areas are drawn in the Figure 8.
The result of linear regression applied to CRS 

reported rice area in comparison to satellite derived 
area are shown in Figure 9 that presents a strong 
relationship with coefficient of determination 
R2=0.844 and generated an equation as below,

The accuracy of this model was estimated through 
three statistical indicators. The results determine a 
fair relationship between compute and estimated rice 
areas with ME=0.95, MBE=0.86 AND RMSE=0.67. 
These ME, MBE and RMSE reveal that the computed 
records corresponds to the predicted records.

Figure 9: Linear regression applied to satellite verses CRS reported 
rice areas.

The rice plant undergoes three sequential stages 
including vegetative stage, reproductive stage and the 
ripening stage. These stages are further subdivided into 
germination, seedling, leaf emergence, transplantation, 
panicle primordia initiation, heading/anthesis and 
ripening stage. In germination, the embryo of rice 
seed germinates by heat and moisture content and 
the white tip appears from the surface of land or 
water. The germination process is highly dependent 
upon the environmental conditions and drawing the 
nutrients from soil or air. We observed various growth 
rates for germinations stage in the study site. The plots 
bearing a temperature range between 30-35 oC were 
early germinated in comparison to the plots bearing 
20 oC. Leaf emergence is the next process which was 
observed highly dependent upon the temperature 
e.g., a leaf takes about 100-degree days for its full 
emergence therefore, a rice plant bearing 20 oC will 
produce a leaf on every 5th day and a plant bearing 20 
oC will produce a leaf on every 4th day. The branches 
are known as tillers which emerge from second leaf 
of main culm as it emerges 5th leaf on main culm. The 
initialization of panicle is known as heading/anthesis. 
We observed that the heading stage took about 15-18 
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days in the study site. The heading stage was observed 
high dependent upon temperature, as a difference of 
1oC caused a delay about 14 days. The ripening stage 
is considered the final stage in which the milky dough 
ripes and turn to yellow then white. The ripening stage 
needs comparatively low temperature as compared to 
other growth stages. We observed the rice plant in the 
basis three growth stages and computed the variations 
in NDVI using satellite spectral bands throughout the 
life period and mapped the results in Figure 10. 

Figure 10: Variations in NDVI throughout the rice growth period 
including pre-plantationflooding,_vegetative stage, reproductive 
stage and the ripening stage.

Net rice production in 2018
We used a satellite image of Landsat 8 to delineate 
the rice area in the study site. Supervised classification 
of this image represents that 689580 ha of area was 
under rice cultivation in 2018. To cross validate 
the classification results, we visited the study site 
physically with Malli Patwari (A person who 
has all the information regarding the area under 
cultivation in his area of command), using Global 
Positioning System (GPS). We pointed out some 
remote locations on the map which were not easily 
recognized which were identified closer to urban 
areas. The GPS based ground survey determined the 
precision of classification about 89% that can be 92% 
(Sisodia et al., 2014). The satellite extracted rice area 
was put in Equation 12 to estimate the rice area as 
per CRS records that was 654966 ha. The rice yield 
was predicted using NDVI value of the year 2018 
which results as 0.72. This NDVI value was placed in 
Equation 10 to compute the yield which 2.05 ton/ha. 
The total rice production was obtained by a product 
of CRS based area (654966 ha) with the predicted 
yield (2.08 ton/ha) that was 1.42 m ton of rice. 
Same methodology was used by various authors e.g., 
(Karamat et al., 2019; Siyal et al., 2015) used the same 

methodology to compute the rice yield. 

Conclusions and Recommendations

This study emphasis the reliability of historic data sets 
to predict rice yield. This project is actually the joint 
venture of historic records with satellite imagery. The 
technique that we used in this research to compute 
the net rice production is handy to apply anywhere, 
even in complex ecological conditions. It can assist 
decision makers and agronomists to estimate crop 
volume well in time before harvest to determine the 
exact amount of import/export.
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