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To evaluate the effects of sodium butyrate (NaBT) supplementation in high-fat diets on the growth 
performance and liver health of common carp (Cyprinus carpio), we formulated three isonitrogenous 
diets: the control diet (5.8% crude lipid, Control diet), the high-fat diet (10.8% crude lipid, HF diet), and 
the NaBT diet (10.8 % crude lipid and 0.1% NaBT, NaBT diet). Each diet was assigned to triplicate tanks 
(100 L) with 24 fish (14.52±0.08 g) in each tank. Experimental fish were fed twice daily for 8 weeks. 
The results showed that fish growth performance was not affected by experimental diets. Fish at HF 
group demonstrated higher content of triacylglyceride (TG) and total cholesterol (TCHO) in the liver. In 
addition, diet HF significantly increased hepatic oxidative stress by increasing malondialdehyde (MDA) 
content, decreasing activity levels of antioxidant enzymes and contents of reduced glutathione (GSH). 
Furthermoure, diet HF significantly decreased the mRNA expression of nuclear factor erythroid 2-related 
factor 2 (Nrf2) and heme oxygenase-1 (HO-1), and simultaneously increased the mRNA expression of 
tumor necrosis factor α (TNF-α), interleukin-1β (IL-1β), and IL-6 in liver of common carp compared to 
control diet (P<0.05). However, diet NaBT significantly improved fish liver health by decreasing contents 
of TCHO and MDA, down-regulating mRNA expression of pro-inflammatory cytokines (e.g., TNF-α, 
IL-1β and IL-6), increasing the activity levels of antioxidant enzymes, and upregulating the mRNA 
expression of Nrf2 and HO-1 in the liver (P<0.05). In conclusion, dietary NaBT supplementation could 
ameliorate the detrimental effects of high-fat diets on liver health by activating Nrf2 in common carp.

INTRODUCTION

Aquafeed costs are a major consideration in aquaculture, 
generally accounting for 40%-50% of the total cost 

of production (Craig and Helfrich, 2002). Protein is 
considered as the most expensive part in aquafeed (Craig 
and Helfrich, 2002). Given this, many strategies have been 
implemented in aquaculture to decrease the protein content 
with other nutrients (Sargent et al., 2003), such as lipids. 
The protein-sparing effects of dietary lipids have been 
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proved in many fish species, such as Atlantic cod (Gadus 
morhua) (Morais et al., 2001), blunt snout bream 
(Megalobrama amblycephala) (Li et al., 2012), and hybrid 
fish tambatinga (female Colossoma macropomum × male 
Piaractus brachypomus) (Welengane et al., 2019).

Common carp (Cyprinus carpio) is a worldwide-
distributed species (cultured in over 100 countries) and 
accounts for up to 10% (over 4 million metric tons in 
2018) of annual freshwater aquaculture production in the 
world (FAO, 2020). In China, the aquaculture production 
of common carp has reached 2.89 million metric tons 
(China Fishery Stastical Yearbook, 2020). For the sake 
of maximum culture profit, inclusion of large amounts 
of non-protein energy (especially high fat) into diets 
of common carp has been a common phenomenon in 
China (Abasubong et al., 2018). Intake of high-fat diets 
reduced the growth performance and disrupted the lipid 
metabolism in common carp (Abasubong et al., 2018; Ze 
et al., 2015). Fish liver is a multifunctional organ acting 
in detoxification, metabolism of carbohydrates and fat, 

A B S T R A C T

Pakistan J. Zool., vol. 55(5), pp 2085-2094, 2023 DOI: https://dx.doi.org/10.17582/journal.pjz/20220331180315

https://creativecommons.org/licenses/by/4.0/
https://dx.doi.org/10.17582/journal.pjz/20220331180315
crossmark.crossref.org/dialog/?doi=10.17582/journal.pjz/20220331180315&domain=pdf&date_stamp=2008-08-14


2086                                                                                        

 

and scavenging foreign substances (Dalmo et al., 1997; 
Moeller et al., 2014). Therefore, it is becoming increasing 
urgent to explore dietary strategies for counteracting the 
adverse effects of high-fat diets on the liver health in 
common carp. 

Sodium butyrate (NaBT) is a salt of butyric acid and 
a commonly used additive to improve fish gut health and 
growth performance (Abdel-Latif et al., 2020; Tran et al., 
2018). Recently, numerous studies on mice have suggested 
that dietary supplementation with NaBT could reduce the 
negative effects of high-fat diets on liver health (Fang et al., 
2019; Matheus et al., 2017; Zhai et al., 2019). In addition, 
ingestion of 300 mg/kg NaBT via gavage in rats fed high-
fat diets reduced the oxidative stress (Sun et al., 2019), 
fat accumulation and inflammation in the liver (Sun et al., 
2018). However, much less research has investitgated the 
effects of NaBT on the liver health of aquatic animals fed 
high-fat diets. Given this, we hypothesized that dietary 
supplementation with NaBT could improve the liver health 
of common carp fed high-fat diets.

To that end, the present study investigated the effect of 
dietary NaBT supplementation on the growth performance, 
lipid deposition, oxidative stress, and inflammation in liver 
of common carp fed high-fat diets. 

MATERIALS AND METHODS

Experimental feed
Three isonitrogenous (31% crude protein) diets with 

different fat content were formulated. The control diet 
(Control) contained medium fat (5.8%); the high fat diet 
(HF) contained high crude lipid (10.8%); the NaBT diet 
(NaBT) supplemented 0.1% NaBT in HF diet (Table I). 

All ingredients were mixed thoroughly. Then the 
mixture were pelleted to pellets (2 mm) using a feed 
machine (Laifu Tk-12B, Guangdong, China). Pellets were 
dried to a moisture content of 8-10% and kept at -20 °C 
until used.

 
Experimental fish and feeding management

Common carp juveniles were purchased from a 
local fish pond (Luoyang, China) and were acclimated 
to laboratory conditions for 2 weeks. After starvation for 
24 h, 216 experimental fish were randomly divided into 9 
tanks (100 L). Each diet was assigned to triplicate tanks. 
Experimental fish were fed twice daily (8:00 and 17:00). 
Feed consumption of each tank was adjusted based on 
fish body weight which were weighted every two weeks. 
The experiment lasted for 8 weeks, during which water 
temperature was 25.7±1.4 °C, dissolved oxygen was above 
6 mg/L, ammonia-nitrogen and nitrite were both below 0.1 
mg/L.

Table I. Feed formula and feed proximate composition 
(g/kg dry matter).

Control HF NaBT
Ingredients
Casein 28.0 28.0 28.0
Gelatin 7.0 7.0 7.0
Dextrin 25.0 25.0 25.0
Soybean oil 5.0 10.0 10.0
Mineral and vitamin premix 1.0 1.0 1.0
Vitamin C 1.0 1.0 1.0
Ca(H2PO4)2 2.5 2.5 2.5
Choline chloride 0.5 0.5 0.5
Sodium butyrate1 0.0 0.0 0.1
Cellulose 30.0 25.0 24.9
Proximate composition (% dry matter)
Moisture 9.97 9.83 9.45
Crude protein 31.43 31.63 31.54
Crude lipid 5.80 10.84 10.80
Crude ash 2.48 2.60 2.85

1Sodium butyrate was purchased from Shanghai Aladdin Biochemical 
Technology Co., Ltd., Shanghai, China.

Sampling
At the end of the feeding trial, all fish were starved 

for 24 h before sampling. All fish in each tank were 
anesthetized with benzocaine (50 mg/L), counted and 
weighed. Then the body weight and body length of 3 fish in 
each tank were recorded for the determination of condition 
factor (CF) and their blood were drawn from caudal vein 
to detect the activity levels of alanine aminotransferase 
(ALT) and aspartate aminotransferase (AST). Then liver 
samples of another 9 fish in each tank were sampled and 
divided to three portions. The first portion was collected 
and preserved at 4% paraformaldehyde for Oil Red O 
staining, and the second and third portions were stored at 
-80 °C for enzyme activity assay and quantitative real-time 
polymerase chain reaction (PCR).

The study protocol and all experimental procedures 
were approved by Experimental Animal Ethics Committee 
of Henan University of Science and Technology. 

Proximate composition of experimental feed
 Proximate composition of experimental diets was 

tested according to the procedures described by AOAC 
(1995). Moisture content was determined through drying 
samples to a constant weight at 105°C. Crude protein 
content was measured with the Kjeldahl method. Crude lipid 
content was determined in a Soxtec system. Ash content 
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was determined with a muffle furnace for 2 h at 600°C.

Oil red O staining
Fixed liver samples were first dehydrated in a graded 

series of ethanol with concentration increasing from 75% 
to 100% and were embedded in parafflin. Then liver 
samples were sliced into sections (4 μm). Liver sections 
were stained with Oil Red O. The area stained with Oil Red 
O solution was analyzed by Image-Pro Plus 6.0 software 
(Media Cybernetics, Rockville, MD, USA).

Assay of biochemical parameters in blood and liver 
samples 

Activity levels of ALT and AST in plasma were 
measured according to 2, 4-dinitrophenyl hydrazine 
(DNPH) method (Reitman and Frankel, 1957). Triglyceride 
(TG) content was measured with a peroxidase-coupled 
method (McGowan et al., 1983) and TCHO content were 
tested following the method described by Allain et al. 
(1974). 

Determination of antioxidant parameters in liver
MDA content was determined with thiobarbituric 

acid (TBA) following the method of Esterbauer and 
Cheeseman (1990). Commercial reagent kits (Nanjing 
Jiancheng Bioengineering Institute, China) were used to 
detect the activity levels of catalase (CAT) and glutathione 
peroxidase (GPx), and contents of glutathione (GSH). 
Activity level of total superoxide dismutase (T-SOD) was 
assayed with xanthine/xanthine oxidase method (McCord 
and Fridovich, 1969). Protein content in liver samples was 
tested with coomassie brilliant blue method following 
Bradford (1976). 

Quantitative real-time PCR
Total RNA in liver was isolated by acid guanidinium 

thiocyanate-phenol-chloroform extraction. After 
determination of RNA concentration and quality, total 
RNA (1 μg) was used to synthesize first-strand cDNA 
for RT-PCR with a commercial reagent kits (TransGen 
Biotech Co., Ltd.)

Primers were synthesized commercially from Tsingke 
Biotechnology (Wuhan, China) (Table II). Real time PCRs 
were performed on a Light Cycler 96 (Roche Diagnostics, 
Meylan, France). The total reaction volume was 15 μL, 
containing 7.5 μL Light Cycler 480 SYBR Green I Master 
mix (Roche Diagnostics), 2.0 μL cDNA template, 1.5 μL 
of primer (2.5 μM), and 4.0 μL PCR-grade water. Each 
sample was analyzed in duplicate with the following 
thermal cycling conditions: 95 °C for 10 min; followed by 
40 cycles of 95 °C for 10 s, 60 °C for 20 s, and 72 °C for 
20 s. Relative quantification of target gene transcripts were 
calculated using the 2-ΔΔCt method (Pfaffl, 2001).

Calculations and statistical analysis 
The growth performance parameters were calculated 

according to following formulae:
SR (%) = 100 × (1 - dead fish number/initial fish 

number)
WGR (%) = 100 × (final body weight - initial body 

weight)/initial body weight
SGR (% d-1) = 100 × [ln (final body weight) - ln 

(initial body weight)]/ days
Feed efficiency (FE, %) = 100 × (fresh body weight 

gain)/dry feed intake
CF (g/cm3) = 100 × body weight/body length3

Table II. Primer sequences for RT-PCR in the experiment.

Gene Sequence (5’-3’) Product size (bp) GenBank ID
Nrf2 F: TTCCCGCTGGTTTACCTTAC 158 JX462955

R: CGTTTCTTCTGCTTGTCTTT
HO-1 F: TCAGCCCATCTACTTCCCTCA 106 JX257180.1

R: GGCAGGCACTGTTACTCTCT
TNF-α F: AGCCAGGTGTCTTTCCACAT 110 XM_019088899.1

R: ATGTAGCCGCCATAGGAATCG
IL-1β F: AAGGAGGCCAGTGGCTCTGT 69 AB010701

R: CCTGAAGAAGAGGAGGCTGTCA
IL-6 F:CATCTGGGGACGAGGTTCAG 195 XM_019073058.1

R:AGGGTTTGAGGAGAGGGGTT
β-actin F: TTGCTCCCTCCACCATGAAG 126 JQ619774.1

R: ACTCCTGCTTGCTGATCCAC
Nrf2, nuclear factor erythroid 2-related factor 2; HO-1, heme oxygenase-1; TNF-α, tumor necrosis factor α; IL-1β, interleukin-1β; IL-6, interleukin-6.
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Prior to analysis, the Shapiro-Wilk and Levene tests 
were used to examine data normality and homogeneity 
of variance, respectively. Then Data that met the 
requirements were analyzed with one-way ANOVAs 
in SPSS v.20.0. P <0.05 was considered as statistically 
significant. All data were expressed as mean ± standard 
error of means (SEM).

RESULTS

Growth performance
There was no difference among groups in final body 

weight (FBW), WGR, SGR, FE, SR, and CF (Table III).

Table III. Growth performance of common carp fed 
experimental diets for eight weeks.

Control HF NaBT
IBW (g) 14.55±0.08 14.51±0.04 14.51±0.02
FBW (g) 33.38±0.70 31.34±1.51 36.37±1.70
WGR (%) 129.43±5.16 115.90±10.31 150.58±11.41
SGR (%/d) 1.47±0.03 1.37±0.07 1.63±0.09
FE (%) 64.71±1.95 66.85±7.24 76.48±1.38
SR (%) 100.00±0.00 98.13±1.87 98.13±1.87
CF (g/cm3) 2.56±0.11 2.56±0.08 2.69±0.05

IBW, initial body weight; FBW, final body weight; WGR, weight gain 
rate; SGR, specific growth rate; FE, feed efficiency; SR, survival rate; 
CF, condition factor.

Liver function
Experimental diets did not affect plasma ALT activity 

level. Diet HF increased AST activity level compared with 
the control. However, diet NaBT significantly decreased 
ALT activity level compared to diet HF (P<0.05) (Fig. 1).

Fig. 1. Plasma alanine aminotransferase (ALT) and 
aspartate aminotransferase (AST) activity levels of 
common carp fed experimental diets. Control, the control 
diet; HF, the high-fat diet; NaBT, the high-fat diet added 
with 0.1% sodium butyrate. Bars marked with different 
letters are significantly different (P<0.05).

Hepatic lipid accumulation 
Common carp fed diet HF significantly increased 

liver TG and TCHO contents compared with that fed 
control diet. However, fish fed diet NaBT had a lower TG 
(P>0.05) and TCHO (P<0.05) contents in liver compared 
to that fed diet HF (Fig. 2). More lipid droplets in fish fed 
diet HF were observed than that in fish fed diets Control 
and NaBT (P<0.05) (Fig. 3).

Fig. 2. Liver triacylglyceride (TG) and total cholesterol 
(TCHO) contents of common carp fed experimental diets. 
Control, the control diet; HF, the high-fat diet; NaBT, 
the high-fat diet added with 0.1% sodium butyrate. Bars 
marked with different letters are significantly different 
(P<0.05).

Fig. 3. Effect of dietary NaBT supplementation on hepatic 
lipid accumulation of common carp. Lipid droplets 
and nuclei are dyed in red and blue by oil red staining, 
respectively (200× magnification). A, the control diet; 
B, the high-fat diet; C, the high-fat diet added with 0.1% 
sodium butyrate. D. lipid accumulation was quantified by 
measuring the intensity of the stained oil droplets. Bars 
marked with different letters are significantly different 
(P<0.05).

Hepatic oxidative stress
Compared with diet control, diet HF significantly 

increased MDA content, and simultaneously decreased 
activity levels of T-SOD, CAT and GPx, as well as contents 
of GSH. However, diet NaBT significantly decreased 
MDA contents, and significantly increased T-SOD and 
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CAT activity levels (P<0.05), compared with diet HF (Fig. 
4).

Compared to control, common carp at the HF group 
had a lower expression level of nuclear factor erythroid 
2-related factor 2 (Nrf2) and heme oxygenase-1 (HO-1) 
(P<0.05). However, common carp fed diet NaBT showed 
a significantly higher expression levels of Nrf2 and 
HO-1 compared with that fed the HF diet and exhibited 
a significantly lower expression levels of Nrf2 and HO-1 
relative to that fed diet control (P<0.05) (Fig. 5).

Fig. 4. Liver antioxidant status of common carp fed 
experimental diets. Notes, MDA, malondialdehyde; 
T-SOD, total superoxide dismutase; CAT, catalase; GPx, 
glutathione peroxidase; GSH, glutathione. Control, the 
control diet; HF, the high-fat diet; NaBT, the high-fat 
diet added with 0.1% sodium butyrate. Bars marked with 
different letters are significantly different (P<0.05).

Fig. 5. Relative expression of nuclear factor erythroid 
2-related factor 2 (Nrf2) and heme oxygenase-1 (HO-1) 
in liver of common carp fed experimental diets. Control, 
the control diet; HF, the high-fat diet; NaBT, the high-fat 
diet added with 0.1% sodium butyrate. Bars marked with 
different letters are significantly different (P<0.05).

Hepatic inflammation
Compared with the control, diet HF significantly 

upregulated the mRNA expression of tumor necrosis 
factor α (TNF-α), interleukin-1β (IL-1β), and IL-6 in liver 
(P<0.05), whereas diet NaBT significantly reduced the 

mRNA expression of TNF-α, IL-1β, and IL-6 (P<0.05) 
compared to fish fed diet HF. There were no significant 
difference in these genes in liver of fish fed diets control 
and NaBT (P>0.05) (Fig. 6). 

Fig. 6. Relative expression of tumor necrosis factor α 
(TNF-α), interleukin-1β (IL-1β), and IL-6 in liver of 
common carp fed experimental diets. Control, the control 
diet; HF, the high-fat diet; NaBT, the high-fat diet added 
with 0.1% sodium butyrate. Bars marked with different 
letters are significantly different (P<0.05).

DISCUSSION

Effect of dietary NaBT supplementation in high-fat diets 
on fish growth performance

In the current study, high-fat diets did not affect 
fish growth and feed utilization, similar phenomenon 
were also found in previous studies on common carp 
(Abasubong et al., 2018) and blunt snout bream (Chen et 
al., 2016). Moreover, dietary supplementation with 0.1% 
NaBT has no influence on fish growth, in agreement with 
results of common carp fed diets containing 300 mg/kg 
microencapsulated sodium butyrate (MSB) (Liu et al., 
2014). However, in other studies, enhancement of growth 
performance was observed in fish fed diets contacting 
NaBT, such as grass carp fed diets added with 0.1% 
powdery sodium butyrate or 0.05%-0.2% MSB (Tian et 
al., 2017), and rice field eel (Monopterus albus) fed with 
high soybean meal diets containing 0.025%-0.1% MSB 
(Zhang et al., 2020), and turbot (Scophthalmus maximus) 
fed 0.2% NaBT-containing diets (Liu et al., 2019). This 
discrepancy may be partly explained by the difference in 
fish species, dose and form of NaBT, feed composition, 
and rearing environment (Biagi et al., 2007; Liu et al., 
2014, 2019).

Dietary NaBT supplementation decreased lipid deposition 
and improved liver function 

In line with previous studies (Dai et al., 2019; Du 
et al., 2006), we found that high-fat diets significantly 
increased the deposition of TG and TCHO in the 
liver. However, dietary 0.1% NaBT supplementation 
significantly decreased hepatic TCHO content and lipid 
droplets. At present, few researches have examined the 
effect of dietary NaBT supplementation on the liver 
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TCHO and lipid droplets in aquaculture. However, reports 
on rats and pigs suggested that NaBT could reduce lipid 
deposition through peroxisome proliferator-activated 
receptor α-mediated activation of β oxidation (Sun et al., 
2018). In addition, studies on pigs suggested that dietary 
0.1% NaBT supplementation could reduce triglyceride 
content in liver by reducing lipogenesis and enhance 
lipolysis via regulating related hormones and genes, such 
as down-regulating the expression of fatty acid synthase 
(Jiao et al., 2020). Thus NaBT could decrease TCHO 
contents and lipid droplets by enhancing lipolysis and 
reducing lipogenesis, further study is needed to reveal the 
underlying mechanism. 

The increased activity level of AST in plasma usually 
indicates liver damage or dysfunction (Ashouri et al., 2015; 
Wang et al., 2006). In the current study, dietary NaBT 
supplementation in high-fat diets significantly decreased 
AST activity levels, indicating that NaBT decreased the 
impairment of liver function induced by high fat. At 
present, reports on the effect of NaBT supplementation 
on the blood AST activity levels are scarce. However, 
accumulating data in terrestrial animals suggested that 
dietary NaBT supplementation could significantly reduce 
AST activity levels in blood of mice or rats fed high-fat 
diets (Mattace-Raso et al., 2013; Zhou et al., 2017, 2018). 
The reduction of AST activity in plasma of common carp 
fed NaBT diets may be due to antioxidant effect of NaBT. 
NaBT could reduce the hepatic oxidative stress, thereby 
stabilizing the membrane permeability and reducing the 
leakage of AST into the blood (Nasr, 2014).

Dietary NaBT supplementation in high-fat diets increased 
liver antioxidant capacity

High-fat diets often leads to oxidative stress in fish 
(Jia et al., 2020; Lu et al., 2017; Zhou et al., 2020). These 
oxidative stress includes increasing MDA contents and 
decreasing activity levels of antioxidant enzymes (Jia 
et al., 2017; Zhong et al., 2020). In this study, high-fat 
diets significantly increased MDA content and decreased 
the activity levels of antioxidant enzymes (e.g, SOD 
and CAT), indicating that oxidative stress occurred in 
fish fed on high-fat diets. However, dietary 0.1% NaBT 
supplementation significantly decreased MDA content and 
increased the activity levels of SOD and CAT, suggesting 
that NaBT alleviated the high-fat diet-induced oxidative 
stress.

Decrease in hepatic oxidative stress by NaBT could 
be due to the activation of Nrf2/HO-1 pathway. Nrf2/HO-1 
pathway plays an important role in defending oxidative 
stress (Loboda et al., 2016). Nrf2 controls the expression 
of many antioxidant response element dependent genes 
and has been reported to upregulate the mRNA expression 

of CAT and SOD (Ma, 2013). Nrf2 could activate the 
transcription of HO-1 which degrades heme and generates 
the antioxidant molecules (Loboda et al., 2016). In the 
present study, lower and higher expression levels of Nrf2 
and HO-1 were found in fish fed high-fat diets and NaBT 
diet, respectively, indicating NaBT increased the activation 
of Nrf2/HO-1 pathway. NaBT is known as an activator of 
Nrf2 (Dong et al., 2017; Wu et al., 2018; Yaku et al., 2013). 
In mammals, it has been proved that NaBT increased 
the expression of Nrf2 by inhibiting histone deacetylase 
(Dong et al., 2017; Wang et al., 2012). Whether NaBT 
activated Nrf2 expression through inhibiting HDAC in 
fish is an interesting question which was worthy of further 
investigation. 

Dietary NaBT supplementation in high-fat diets decreased 
liver inflammation

Liver inflammation is a common phenomenon in 
aquatic animals (Cao et al., 2020; Dai et al., 2019). TNF-α, 
IL-1β, and IL-6 are commonly proinflammatory cytokines 
(Rauta et al., 2012) and have been identified as markers of 
inflammation in fish (Dai et al., 2019; Urán et al., 2008). 
In this study, high-fat diets significantly upregulated 
the mRNA expression levels of these proinflammatory 
cytokines in the liver, implying the occurrence of the liver 
inflammation in fish fed high-fat diets. However, dietary 
addition with NaBT in the high-fat diets significantly 
decreased the mRNA expression of these proinflammatory 
cytokines. Oxidative stress may partly account for the 
phenomenon. Oxidative stress and inflammation are 
closed linked; continued oxidative stress is known for 
leading to chronic inflammation through activating a 
variety transcription factors (Reuter et al., 2010). In this 
study, NaBT reduced the oxidative stress, thus alleviating 
the liver inflammation.

CONCLUSION

In the present study, dietary 0.1% NaBT 
supplementation significantly reduced hepatic fat 
deposition and improved liver function of common carp 
fed high-fat diets. In addition, dietary supplementation 
with 0.1% NaBT in high-fat diets reduced hepatic oxidative 
stress and inflammation in common carp by activating 
Nrf2/HO-1 pathway. 
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