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Identification of core biomarkers for cancer prevention and treatment is crucial. Tumor glycolysis is 
an important metabolic phenotype and many natural compounds from medicinal plants exhibit anti-
glycation effects. Therefore, it is of potential significant to find biomarkers based on glycolysis-related 
genes in predicting the prognosis of colon cancer (CC), a common invasive gastrointestinal tumor. In 
this study, clinical and gene data were collected to identify glycolytic genes that significantly associated 
with overall survival (OS) rate of CC patients through gene set enrichment analysis (GSEA) and Cox 
regression models. The K-M method was used to determine the difference of OS rate with high and low 
risk scores. The accuracy of risk scores were determined based on receiver operating characteristic (ROC) 
curve. Hierarchical analysis and Cox regression were performed to assess the correlation between CC 
risk score and clinical symptoms. Moreover, qPCR was used to verify the expression level of prognostic 
genes in human colorectal cancer cell line (HCT116) and human colorectal epithelial cells (FHC cells). 
The results showed 202 glycolytic genes were found with statistical differences, and 4 glycolytic genes 
were identified, including Enolase 3 (ENO3), glypican-1 (GPC1), Nucleolar Protein 3 (NOL3) and 
Stanniocalcin 2 (STC2). A prognostic risk score model was established, and the OS rate of high-risk 
patients was found significantly reduced (p <0.001) compared to low-risk patients. The 5-year OS ROC 
area under curve (AUC) of the model was 0.75. qPCR results confirmed that glycolysis-related genes 
ENO3, GPC1, NOL3 and STC2 were significantly upregulated in HCT116 cells compared to FHC cells. 
In conclusion, our study identified four glycolytic genes that significant impact prognosis of CC, and 
established a prognostic risk prediction model, which can provide reference for prognosis assessment and 
efficient treatment in CC.
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INTRODUCTION

Identifying core biomarkers is crucial for cancer 
prevention and treatment, including colon cancer (CC), 

a common invasive gastrointestinal tumor with increasing 
incidence worldwide in recent years (Huang et al., 2019; 
Lord and Hall, 2019). Although treatment regimens such 
as targeted therapy have greatly improved the clinical 
outcomes, most CC patients still have poor prognosis 
due to recurrence and metastasis (Gunter and Leitzmann, 
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2006). Therefore, it is necessary to find biomarkers to 
predict the prognostic risk of distant metastasis in CC 
treatment for timely intervention and treatment.

In normal cells, cells can use a variety of metabolic 
pathways associated with biosynthesis in order to keep 
glucose in a relatively balanced state at all times. However, 
recent evidence has shown that the metabolism of cancer 
cells is very differently from that of the normal cells from 
which they originate. One of the characteristics of glucose 
metabolism in tumor cells is that they still choose to use 
glycolysis when the oxygen content is normal, which is 
called Warburg effect. Tumor cells mainly obtain energy 
through glycolysis, many natural compounds isolated from 
medicinal plants have shown promising anti-glycation 
effects. Glucose metabolism in cancer cells exhibits the 
feature of high aerobic glycolysis (Taieb et al., 2019; Tao 
et al., 2018). Enhanced glycolysis and glutamine metabolic 
reprogramming are the main signs of cancer, leading to a 
variety of metabolic reprogramming and hypoxia-induced 
resistance to chemotherapy drugs, which made the cancer 
cells to maintain a high proliferation rate and resistance to 
certain cell death signals. This kind of phenomenon has 
been found to be the new therapeutic targets and the focus 
of new cancer drugs. 

According to the relevant researches, glycolysis is 
very important in proteus biosynthesis, hence confering 
more advantages on cancer cells in the face of reduced 
nutrient supply (Abbaszadeh et al., 2020; Feinberg et al., 
2017). The oncogenic regulation of glycolysis indicates 
the function of tumor glycolysis, and it is necessary to 
elucidate the underlying mechanism of glycolysis in CC 
(Jiang, 2017; Chen and Russo, 2012). Recent studies have 
shown that the clinicopathological characteristics such 
as age, metastasis and stage are not obvious and can not 
accurately predict the prognosis of cancer. Therefore, 
more and more mRNAs have been identified to determine 
the prognosis of CC (Bearne, 2017). However, these 
biomarkers are not sufficient to predict patient outcomes 
accurately and independently, especially the individual 
gene levels which may be influenced by various factors, 
thus restricting their application as effective independent 
prognostic indicators (Ji et al., 2016). 

In this study, we aimed to identify glycolysis-related 
genes in CC through gene set enrichment analysis (GSEA). 
Subsequently, we extracted meaningful mRNAs from 
CC patient samples and used whole genome expression 
data from the Cancer Genome Atlas (TCGA) to build 
a glycolysis-related prognosis model. Combined with 
multivariate data analysis, receiver operating characteristic 
(ROC) curve and independent prognosis analysis, the 
gene and protein expression levels in CC samples were 
explored. Additionally, the expression of related genes in 

the human colorectal cancer cell line HCT116 was further 
verified by qPCR. The overall experimental design was 
shown in Supplementary Figure S1. These analyses are 
expected to predict prognosis of CC, which provides a new 
target for the diagnosis of CC.

MATERIALS AND METHODS

Data collection
The CC patients’ key features in TCGA (The Cancer 

Genome Atlas) data were downloaded through the data 
portal (https://portal.gdc.cancer.gov/). The clinical data 
including: survival, survival time, age, gender and cancer 
stages. Total 470 CC patients and 41 normal control 
samples in TCGA dataset were collected, and Perl code 
was used to preprocess the above raw data, including: 
transcriptome data processing, ID conversion, clinical 
information extraction, etc. (Maiers et al., 2019).

Functional enrichment analysis
Gene Set Enrichment Analysis (GSEA) was used 

for enriching and analyzing the selected gene set, to find 
potential significant difference genes. Normalized enrich-
ment score (NES) ≥ 1.0 and nominal p ≤ 0.05 were set 
for the criteria of identifying significantly enriched gene 
sets in GSEA. Gene expression differences between CC 
patients and healthy samples were judged. The signal 
pathways related to glycolysis were further determined 
and glycolytic genes were identified. The relevant signal 
pathways were as follows: Glycolysis_by_fructose_2_6_
bisphosphate_metabolism, Biocarta_glycolysis_pathway, 
Go_glycolytic_process, Hallmark_glycolysis, Kegg_glyc-
olysis_gluconeogenesis, And Reactome_glycolysis.

The KEGG database was used for pathway 
enrichment analysis of these DEGs in an effort to gain 
high-level insights into their potential functional relevance. 
GO enrichment analyses were conducted to assess the 
enrichment of these DEGs in specific biological processes, 
molecular functions, and cell components (BPs, MFs, and 
CCs, respectively) (Liu et al., 2022).

Glycolysis prognostic analysis and construction of risk 
scores model

The prognosis model of glycolysis was constructed 
by univariate Cox regression and multivariate Cox 
regression analyses. Cox algorithm was applied to 
calculate the relation of mRNA level and OS of tumor 
patients, and to determine the factors associate with 
glycolysis prognosis. For univariate Cox regression, 
hazard ratio (HR) >1 and Cox PV <0.05 were used as 
the screening criteria, multivariate Cox analysis was 
applied to assess results of univariate Cox analysis. The 
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final results were used as the related factors of glycolysis 
prognosis and these factors were also the weight of 
glycolysis prognosis model. The above analysis was 
conducted by Rstudio based on the R package. The 
screening of prognostic factors were divided into two 
types: risk factor (HR >1) and protective factor (0 < 
HR < 1). As there was no protective prognostic factors 
screened, so it was ignored and only risk factor was 
focused. According to the Cox analysis, the formula of 
prognostic risk score was calculated as the sum of each 
risk coefficient (coefi) value multiply by expression of 
corresponding prognostic factor (Chen et al., 2020).

Cell culture
Human colorectal cancer cell line HCT116 and 

human normal colorectal mucosa epithelial cell (FHC) 
were obtained from China National Biomedical Cell 
Repository. The main reagents and equipment were: 1% 
penicillin-streptomycin (Solarbio, Beijing, China), 10% 
fetal bovine serum, 0.05% trypsin (Gibco, Waltham, 
MA, USA), RNAeasy animal RNA isolation kit (Qiagen, 
Hilden, Germany), and RevertAid First Strand cDNA 
Synthesis Kit (Thermo Fisher Scientific, Waltham, MA, 
USA).

HCT116 cells were cultured in RPMI-1640 medium 
supplemented with 1% penicillin-streptomycin and 10% 
fetal bovine serum, while FHC cells were grown in 
DMEM medium with the same conditions. Both cell lines 
were incubated at 37°C in a 5% CO2 humidified incubator 
(Sanyo, Japan), and were passaged using 0.05% trypsin 
when they reached 80% confluency.

Validation of prognostic genes by qPCR assay
Total RNA was extracted using the RNAeasy animal 

RNA isolation kit with rotating columns according 
to the instructions. The extracted RNA was reverse-
transcribed to cDNA using the RevertAid First Strand 
cDNA Synthesis Kit following standard protocols. The 
qPCR assay was performed on a Roche LightCycler 480 
(Roche Diagnostics, Vilvoorde, Belgium). The protocol 
was as follows: initial incubation at 95°C for 10 min, 
followed by 50 cycles of 95°C for 15 s, annealing for 30 
s, and elongation at 72°C for 30 s; and finally cooling 
at 40°C for 30 s. The annealing temperature for ENO3, 
GPC1, NOL3, STC2 and β-actin was 61, 55, 56, 60 and 
55°C, respectively. Three replicates of each sample were 
analyzed, and the relative expression of mRNA was 
quantified after normalization to β-actin. The primers are 
listed in Table I.

Statistical analysis
The relation of the survival data of every variable 

were tested using K–M method, while that of clinical 
data and risk scores were measured using Cox analysis 
method (Zhang et al., 2021). The significant expression of 
glycolysis prognostic factors in normal and tumor samples 
was detected using the student t-test, with a statistically 
different threshold set at 0.05. All the analysis was 
conducted using R-studio software (Version 3.6.2, Boston, 
MA, USA).

Table I. Primer sequences for qPCR used in this study.

Primer Sequence (5’ to 3’)
ENO3 F GGCTTCGCACCCAACATCCTG

R CCATGCCGATCACCACCTTGTC
GPC1 F GCGGTGATGGCTGTCTGGATG

R AGGTCTTCTGTCCTTCCTGCTCTG
NOL3 F CGGAGGAGCCAGAGCCAGAG

R GTTCTGCTTCAGCCTCGGGTTC
STC2 F GACCCTGGCTTTGGTGTTGGC

R GTGCTGGATCTCCGCTGTATTCTG
β-actin F CACTGTCGAGTCGCGTCC

R TCATCCATGGCGAACTGGTG

RESULTS AND DISCUSSION

Enrichment analysis of glycolysis and differential genes
The result revealed 3 significant functional groups 

of glycolysis genes, namely Glycolysis_by_fructose_26_
bisphosphate_metabolism, Hallmark_glycolysis, And 
Reactome_glycolysis (Supplementary Fig. S2). Compared 
with normal samples, Glycolysis_by_fructose_2_6_
bisphosphate_metabolism in tumor samples was 
significantly correlated (p <0.05), while the other two 
showed a stronger significant correlation (p <0.01). 
Perl code was applied to extract the expression levels 
of glycolysis gene that were significantly related in the 
functional group, followed by the application of the 
difference analysis filter. 

Compared with the normal samples, a total of 202 
significantly differentially expressed genes were found 
(p <0.05), of which 54 were downregulated and 148 were 
upregulated in cancerous and paracancerous tissues. To 
confirm whether these differential genes were mainly 
involved in glycolysis, we conducted GO and KEGG 
analysis using Metascape. The result indicated that (Fig. 
1), the most important biological process was associated 
with glycolysis and the most important metabolic process 
was related to glycometabolism.
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Table II. Potential prognostic glycolysis genes.

Genes HR HR.95L HR.95H Cox P value
NOL3 1.08562788644099 1.04045984577194 1.13275674463334 0.000151092147214812
ANKZF1 1.09603376526771 1.03408003657031 1.16169926129817 0.00200961854957091
IDUA 1.07798480240408 1.00272060514574 1.15889832945567 0.0419981696582861
PPFIA4 2.91608494870452 1.45372674906806 5.8494840474748 0.00258370907825577
STC2 1.05029132248173 1.01116247625749 1.09093433348441 0.0113087367768567
GPC1 1.03151430929995 1.00073007654951 1.06324551967027 0.0447310436445428
ENO3 1.54819254587463 1.23185128752019 1.94577071387156 0.000178260609472247

Note: Four prognostic glycolysis genes were in bold.

Fig. 1. GO and KEGG pathway enrichment analysis of significant glycolysis genes based on Metascape.
Note: the significance increased from bottom to top; marked in box indicated the most significant metabolic pathway.

Establishment of glycolysis prognosis model
The expression of the differential genes was analyzed 

in conjunction with the clinical survival data of tumor 
samples using R language. Single factor Cox regression 
analysis was performed on the differential gene expression 
of tumor samples, and the findings were shown in Table 
II. A total of 7 genes were screened as potential glycolysis 
prognostic genes. Subsequently, using the Cox regression 
analysis, four potential glycolysis prognostic genes were 
screened, including Enolase 3 (ENO3), glypican-1 (GPC1), 
Nucleolar Protein 3 (NOL3) and Stanniocalcin 2 (STC2). 
Using the above 4 screened genes, a glycolysis prognosis 
model was built. Notably, the criterion for accessing 
various risk was based on the mean value. Consequently, 
patients with values greater than median were regarded as 

high-risk, whereas that with values below median were 
regarded as low-risk.

Analysis of glycolysis prognosis model
After the establishment of the glycolysis prognosis 

model, patients were divided into two risk groups, and 
their survival curves were analyzed. The survival rate of 
the two groups showed a downward trend over time, but 
the curves were significantly separated (p <0.01), with 
eight-year survival rates of 30.1% and 55% (Fig. 2A). The 
ROC curve analysis revealed an area under curve (AUC) 
value of 0.75. The accuracy of prediction by the model was 
higher than 0.7, indicating that the diagnosis of glycolysis 
prognostic model had practical significance (Fig. 2B). 
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Fig. 2. Survival curve analysis (A) and receiver operating 
characteristic (ROC) curve analysis (B) of glycolysis 
prognosis model with colon cancer patients. 
Notes: A: red indicates high-risk patients (n= 221) and 
blue indicates low-risk patients (n= 222), and with a 
significant difference in survival rate (p <0.001). B: ROC 
curve analysis result was 0.750. 
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Fig. 3. Risk map for glycolysis prognosis model in colon 
cancer patients. 
A: risk score. B: the survival number of low risk score 
patients was significantly more than that of high risk score 
patients. C: heat map analysis. ENO3, GPC1, NOL3, STC2 
genes expression in patients with high risk scores were 
significantly more than those with low risk scores.

The risk curve combinatorial graphs demonstrated 
that patients from left to right with low-risk scores were 
denoted with green and remained relatively stable over 
time, while those with high-risk scores were denoted with 
red and exhibited an increasing risk score over time, the 
overall risk score from left to right showing a gradually 
increasing (Fig. 3A). In Figure 3B, from left to right, the 
number of deaths increased and the maximum survival 
time decreased. Moreover, it can be seen that the genes 
level associated with prognosis of glycolysis from left to 
right was significantly deepened (Fig. 3C). 
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Fig. 4. Gene mutation analysis (A) and difference analysis 
(B) for model samples from TCGA. 
Notes: A: 105 patients samples in cBioPortal online 
database; NOL3: gene amplification, 1 case; missense 
mutation, 1 case; STC2: missense mutation, 1 case; GPC1: 
missense mutation, 4 cases; ENO3: deep deletion, 10 
cases; truncation mutation, 1 case; missense mutation, 1 
case. B: Red color: normal samples; green color: tumor 
samples; ***: significant difference at p <0.001.

To further analyze the mutations of the four selected 
genes for glycolysis prognosis of CC, clinical samples 
were analyzed through cBioPortal online database. Of 
the 105 patients studied, 1.9% had NOL3 mutation, 1% 
had STC2 mutation, 4% had GPC1 mutation and 12% had 
ENO3 mutation. Among them, 1 case of gene amplification 
(NOL3), 1 case of missense mutation; 4 cases of missense 
mutation (GPC1), 10 cases of deep deletion (ENO3), 1 case 
of truncation mutation, and 1 case of missense mutation 
(Fig. 4A). We further analyzed the expression of ENO3, 
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GPC1, NOL3, and STC2 in tumor and normal samples for 
further verification. It was found that the expression level 
of the four genes were significantly up-regulated in tumor 
samples compared with normal samples (p <0.001, Fig. 4B).

Independent prognostic analysis
To assess whether these mRNA markers on prognostic 

ability were independent of each other, various indicators 
including age, gender and tumor stage were established. 
The whole data set of prognostic was analyzed by single 
and multiple factors. The results showed that (Fig. 5A), in 
the single factor analysis, the p-value of age, tumor stage 
and risk score was less than 0.01, indicating that these 
three factors had a significant correlation with the survival 
status of patients. Moreover, the HR value was greater 
than 1, suggesting that these three factors were high-risk 
factors. That is, the order the patient, the higher the risk at 
tumor stage type, and the higher risk score, leading to the 
greater risk the patient is. The above results were further 
validated, confirming that age, tumor stage type and risk 
score can be independent of other clinical characteristics 
as independent prognostic factors (Fig. 5A). 

 

 

A

B
A 

B 

 

 

Fig. 5. Independent prognostic analysis (A) and clinical 
characteristics analysis (B) for the glycolysis prognosis 
model. A: uniForest and multForest analysis from left to 
right, the stage and risk scores were statistically significant 
(p-value <0.05, Hazard ratio >1); B: 470 tumor samples 
with colon cancer based on TCGA.
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Fig. 6. Clinical grouping verification for colon cancer 
patients.
A: based on age; B: based on gender; C: based on stage; 
D: based on T.

Similarly, results were observed in the constructed 
clinical survival curve (Fig. 5B), the survival rate of 
patients over 65 years old was significantly different from 
that of patients aged under 65 years (p = 0.01). Moreover, 
compared to stage I, II in the tumor stage, CC stage III, IV 
were obviously different (p = 0.01). However, there was 
no significant difference observed in that of CC between 
the sexes.

Validation of clinical grouping model
To further verify whether the model was applicable 

to different populations, clinical grouping verification 
was carried out. As depicted in Figure 6A, there was a 
significant difference in the high-risk and low-risk groups 
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for both age groups > 65 years (p = 0.001) and ≤ 65 years 
(p = 0.012). With respect to gender groups (Fig. 6B), a 
significant difference between the high-risk and low-risk 
groups was observed among female patients (p = 0.044); 
the difference was more significant compared to male 
patients (p = 0.003). For the stage groups (Fig. 6C), there 
was no significant difference observed between the high-
risk and low-risk groups in Stage I and II (p = 0.597), 
while a significant difference was observed in stage III 
and IV (p = 0.002). For T groups (Fig. 6D), there was no 
significant difference between the high-risk and low-risk 
groups in T1-2 group (p = 0.069); however, a significant 
difference was observed in T3-4 group (p = 0.002). These 
results suggested that the glycolysis prognosis factors in 
CC may not be well predicted in early diagnosis, and the 
glycolysis prognosis model may exhibit weaknesses in the 
early stage of CC.

Glycolysis-related genes ENO3, GPC1, NOL3, STC2 in 
HCT116 and FHC cells

To identify whether these glycolysis-related genes 
ENO3, GPC1, NOL3 and STC2 were responsive in colon 
cancer, we studied the mRNA expression levels of these 
genes in FHC cells and HCT116 cells in vitro by qPCR. 
As shown in Figure 7, the mRNA expression levels of 
ENO3, GPC1, NOL3 and STC2 in HCT116 cells were 
significantly upregulated (P <0.01) compared to those in 
FHC cells.

ENO3      GCP1       NOL3       STC2

Fig. 7. Relative expression of ENO3, GCP1, NOL3, STC2 
in FHC and HCT116 cells. 
FHC, human normal colorectal mucosa epithelial cells; 
HCT116, Human colorectal cancer cell line; Data were 
representative of three separate trials; ** P <0.01.

DISCUSSION

CC is a common digestive system disease. Although 
the mortality of CC patients remains largely unchanged, the 
mortality of elderly patients (≥65 years old) is increasing 

year by year (Abdel-Wahab et al., 2019; Guillaumond et al., 
2014). The occurrence of diseases is usually accompanied 
with the abnormal expression of specific signal molecules 
(Song and Miao, 2022). Metabolism of tumor cells has 
a special way called the Warburg effect. Although under 
aerobic conditions, energy is still rapidly produced mainly 
through glycolysis, which is therefore a crucial energy 
source for tumor cells. Thus, glycolysis-related genes have 
significant associations with the prognosis of CC patients 
(Gendoo, 2020; Ibrahim et al., 2018). Consequently, we 
developed a glycolytic-related genes model based on 
the characteristics of glycolytic metabolism of tumors to 
predict the prognosis of CC patients.

High-throughput technology has facilitated large-
scale biological data research, with abundant genomic data 
have been extracted to identify new diagnostic biomarkers 
(Pan et al., 2021; Chaneton and Gottlieb, 2012; Li et al., 
2014). Recent studies have constructed novel prognostic 
markers of gene expression levels or mutations based 
on RNA sequencing data, and identified them using Cox 
proportional hazards regression models (Ren et al., 2020; 
Lai et al., 2017). In this study, Cox regression analysis 
was carried out to evaluate the application value of four 
glycolytic gene combinations in predicting the prognosis 
of CC patients, and a correlation regression analysis model 
was established. The CC dataset in TCGA was used, and 
the tissue-related data were compared and analyzed. K-M 
analysis showed that there was a negative correlation 
between risk parameters and prognosis. This study used a 
statistical model composed of multiple prognostic markers, 
combined with the predicted effect of each component 
glycolytic gene to improve predictive accuracy, which is 
widely used because they are more accurate than single 
biomarkers in this field. However, a limitation of the 
study was the lack of data about cancer cell metastasis 
and recurrence in TCGA, therefore we only use OS rate to 
evaluate the patients with CC.

Using a bioinformatics approach, 4 genes that 
associated with cellular aerobic glycolysis (ENO3, GPC1, 
NOL3, STC2) were identified, and their prognostic value 
in CC were demonstrated. ENO3 is mainly involved in 
glycolytic and glucose metabolism, and changes in ENO3 
gene expression can be observed in various tumor cells. 
Pyruvate kinase is a kind of crucial enzyme in glycolysis 
pathway, regulated by the enealcoholize enzyme, which 
contributing in converting enol phosphate type ADP into 
ATP, pyruvic acid and pyruvate (Munir et al., 2020; Amin 
et al., 2019; Guillaumond et al., 2014). GPC1 is a member 
of the GPC family of glucosylphosphatidylinositol-
anchored membrane-related heparan sulfate proteoglycans 
(HSPG), which includes six subtypes that mainly regulate 
cell growth and differentiation (Moutinho-Ribeiro et al., 



270                                                                                        

 

Q. Ran et al.

2020). However, limited research data has been conducted 
on the association between GPC1 and other cancers, so 
the study of GPC1 may need further exploration and 
analysis for CC. Nucleolus protein plays an important 
role in regulating tumor nucleolus proteins, improving 
the synthesis level of chromosomal structural proteins 
and promoting the early stage of tumor cells by 
accelerating the spindle division rate of cancer cells. 
However, although NOL3 is highly expressed in many 
non-terminally differentiated tissue tumor cell lines, 
including liver cell lines (Huang et al., 2018), the 
association between NOL3 and tumor development 
remains unclear and needs to be further explored. STC 
is a glycoprotein hormone that is mostly involved in the 
physiological functions of the body through spontaneous 
secretion or paracrine. Changes in the concentration of 
STC2 can significantly promote changes in cancer cells 
in vivo. STC2 can affect the function of endoplasmic 
reticulum of cancer cells, and promote the damage of 
mitochondria, leading to abnormal regulation of tumor 
cell cycle with significantly increased changes in cell cycle 
(Yang et al., 2020; Bironaite et al., 2013; Ciriello et al., 
2012). Therefore, further studies on the genes and their 
prediction models are necessary to constantly identify 
new biomarkers and establish related prediction models. 
This holds great promise for the diagnosis, treatment and 
prognosis of cancer.

CONCLUSION

In this study, four glycolysis-related genes as 
biomarker in CC were identified, and a novel predictive 
risk score model was established based on their expression 
levels to predict the prognosis of CC patients. Moreover, 
their mRNA expressions were detected to further confirm 
their connection in CC. The identification of these 
glycolytic gene biomarkers for CC prognosis provides 
a new potential approach to improve the prediction and 
treatment of CC.
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