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ABSTRACT

Shared-Clock (SC) architectures based on the Controller Area Network (CAN) protocol have been inherently 
plagued by flexibility and fault-management issues since they were introduced. The easiest way out of such issues 
is to adopt the more flexible/fault-manageable but expensive protocols such as the Time-Triggered Protocol (TTP) 
and FlexRay. Looking at the cost-effective nature of CAN and its widespread use, we started working on making 
such SC architectures more flexible and fault-manageable on embedded level as demonstrated by our previous work 
“Improving flexibility and fault-management in CAN-based “Shared-Clock” architectures”, published in ELSEVIER 
Journal of Microprocessors and Microsystems (Volume 37, 2013, issue 1, pages 9-23). In this paper, we intend to 
show that the use of a Port Guardian (PG) mechanism can also improve fault-management on system’s level.
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INTRODUCTION

The Controller Area Network (CAN) protocol is exten-
sively used in automotive, process control and industrial 
applications (Fredriksson, 1994), (Pazul, 1999), (Farsi 
& Barbosa, 2000) & (Etschberger, 2001). Due to such 
utility, most modern microcontroller families provide 
support for it (Philips, 1996), (Siemens, 1997), (Infineon, 
2000) & (Philips, 2004). As mentioned earlier in (Amir 
et al., 2013) with several limiting issues. Of particular 
concern in this paper is the non-support of CAN for 
fault-management on system’s level due to its original 
bus topology. Building on the CAN topology migration 
platform built in (Amir et al., 2013), in this paper, the 
same Port Guardian (PG) mechanism is used in order 
to demonstrate (with results) that fault-management on 
system’s level in Shared- Clock (SC) architectures can 
also be achieved.

This paper is organized as follows: Section 2 presents 
the setup used for simulating the conditions in which 
certain system’s level faults may occur. A model of such 
particular “Setup-related-faults” is also given in this 
section. In Section 3, we describe how system level faults 
are simulated inside a CAN-Star-based SC environment 
and present the system’s response timings of managing 
such faults. Section 4 presents limitations of the proposed 
methodology and suggests further improvements. Finally, 
Section 5 presents our conclusions.

ENGAGED SETUP

Electronic Throttle Control System (ETCS)

The setup used for the purpose of this paper is shown 
in Fig. 1 and is the same setup presented in (Amir et 
al., 2013). The ETCS shown in Fig. 1 is a hardware 
prototype assembled using Olimex development boards 
(Olimex, 2017). The Slaves in this setup, in electronic 
throttle control mode, run a single task (Slave 1and Slave 
2 each run a sensing task which senses the accelerator 
pedal position while Slave 3 & 4 each run an actuation 
task which actuates the throttle control motor). 

In Fig. 1, Slave 2 acts as a backup for Slave 1 while 
Slave 4 backups Slave 3. The Masters on the other hand 
each run three tasks (i.e. Fuel Injection/Ignition/Emissions 
control) while deploying the TTC-SC7 protocol (Amir 
et al., 2013) using the PG mechanism. Regarding scal-
ability, the ETCS setup in Fig. 1 is capable enough to 
perform its main function and can also schedule other 
automotive-management tasks (e.g. Cruise Control, ABS 
Control, Traction Control etc) using the time-triggered 
co-operative task schedulers on the Master and Slave 
nodes. It is worth mentioning here that the methods 
proposed in this paper as well as in (Amir et al., 2013) 
are not just confined to ETCSs. The ETCS is used here 
as a system test case in order to show the ability of 
the proposed approach in improving fault-management 
in CAN-based safety-critical embedded designs. Other 
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safety-critical applications of the proposed approach 
where embedded or system level faults may occur include: 
Industrial Process Control; Static and Portable Traffic 
Lights Control; Level Crossing Signal Control; Air Traffic 
Control; Weapons Systems (e.g. Surface to Air Missile 
Batteries); Intra-Satellite Networking; Automated Motor 
Vehicles (e.g. Mars Rover or Bomb Disposal Robots); 
Medical Monitoring Equipment; Locomotive Braking 
Systems; Avionics; Fire Alarm Systems; Intruder Alarm 
Systems (Security Systems) and Industrial Robotics. 
The proposed design in this paper is based on the TT 
architecture and as a well established fact; systems based 
on such architectures are highly predictable and reliable 
(Kopetz, 2000) and (Short & Pont, 2007). Also, such 
features are an essential requirement in safety-critical 
applications (Kopetz, 2000).

System’s Level Faults in the ETCS Setup

Faults related to the setup used for this case study 
are described in this section as follows.

Sensor Failure or Malfunction

In ETCS based automobiles, sensors are deployed at 
both ends i.e. for sensing the position of the accelerator 
pedal as well as for sensing throttle position. A mal-
function at any end will provide erroneous data to the 
onboard computer and will degrade the efficiency and 
safety of the driver’s environment. A sensor failure at 
either end will also have the same effect on the integrity 
of the environment. 

Throttle Control Motor (TCM) Failure or 
Malfunction

A TCM failure or malfunction will not replicate the 
proportional mechanical movement of throttle as dictated 
through the data sent from the onboard computer. In 
turn, for example, the TCM will not bring the speed of 
the vehicle down (at this time the driver is removing 
or has removed his/her foot from the accelerator pedal) 
as it might have failed or malfunctioned at a full-open-
throttle position. This fault will put the safety of the 

Figure 1: Electronic Throttle Control System (ETCS) schematic.
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driver in jeopardy as the vehicle will speed up instead 
of slowing down.

Stuck Throttle Fault

This fault might be a consequence of TCM failure/
malfunction or some other mechanical anomaly like 
Gunk accumulation in throttle body. A stuck throttle fault 
will render the throttle movement stuck at one place in 
relation to the accelerator pedal position sensor’s data 
sent by the onboard computer. 

Stuck Accelerator Pedal (SAP) Fault

There are different reasons such as mechanical or 
design based anomalies which may cause an acceler-
ator pedal to get stuck at any position. An SAP fault 
at a maximum position is most worrying as it creates 
hysteria for the driver which will cause further mistakes 
e.g. turning the ignition OFF which causes the power 
steering to shutdown. Consequently, it makes it pretty 
difficult to bring the vehicle to a safe stop. 

FAULT SIMULATION METHODS & RESULTS

System’s level faults described in previous section 
were simulated through an ETCS (shown in Fig. 1) 
designed by using LPC-E2294 rev.B development 
boards (Olimex, 2017) as Masters and LPC2378-STK 
development boards (Olimex, 2017) as Slaves. Fault 
simulation methods are described in Fig. 2. In Table 1, 
SWT represents “System Wait Time”; “Fault Duration” 
is represented by FD while the “Response Time” of the 
PG mechanism is represented by RT as were in (Amir 
et al., 2013). 

As was for embedded level faults in (Amir et 
al., 2013), the PG mechanism (given as reference in 
Appendix) checks “Fault Intermittency” for certain 
system’s level faults as well using the SWT as shown in 
Table 1. Which means that if the fault duration is greater 
than the system wait time? Only then the PG mechanism 
will deploy its redundancy routine by switching to a 
backup node (see Appendix). Otherwise, it will keep on 
running the setup in its original configuration as shown 
in Fig. 1. Original configuration here means the state of 
the setup before fault-injection. 

Table 1: PG mechanism’s response timings (RTs) related to faults on system’s level.

Fault SWT – FD PG Response RT

Sensor failure or mal-
function

Slave 1 transmits an 
empty Ack message

3s – 6s Slave 2 Engaged 1.1084 ms
3s – 2s Slave 1 Continued -

Slave 3 transmits an 
empty Ack message

3s – 6s Slave 4 Engaged 1.1086 ms
3s – 2s Slave 3 Continued -

Slave 2 transmits an 
empty Ack message

3s – 6s Delete Task Array 14.45 µs
3s – 2s Slave 2 Continued -

Slave 4 transmits an 
empty Ack message

3s – 6s Delete Task Array 14.45 µs
3s – 2s Slave 4 Continued -

TCM failure or mal-
function

Slave 3’s APF (Returns 
Error)

3s – 6s Slave 4 Engaged 1.1083 ms
3s – 2s Slave 3 Continued -

Slave 4’s APF (Returns 
Error)

3s – 6s Delete Task Array 14.46 µs
3s – 2s Slave 4 Continued -

Stuck throttle fault RT approximately same as TCM failure or malfunction
Stuck Accelerator Pedal 

(SAP) fault
APPSs value max + EINT0 Occurrence Delete Task Array 3.32 µs
APPSs value max + EINT1 Occurrence Delete Task Array 3.322 µs

Stuck Accelerator Pedal 
(SAP) fault

APPSs value (any non-zero position) + EINT0 
Occurrence

Delete Task Array 3.31 µs

APPSs value (any non-zero position) + EINT1 
Occurrence

Delete Task Array 3.32 µs
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The fault-management response times for the engaged 
setup shown in Fig. 1 and the PG mechanism (Appendix) 
towards system level faults are given in Table 1. Where, 
APF means “Acknowledgement Processing Function” 
inside the Master scheduler. Please note that EINT0 and 
EINT1 in Table 1 are two redundant external interrupt 
lines connected to the brake of the vehicle. These lines 
in turn simulate a Brake Override Mechanism (BOM)). 
The BOM works in an event if the accelerator pedal is 
stuck at the maximum depressed position (or any non-
zero position) and the driver is trying to brake.

It is our understanding that in normal driving practice 
drivers does not press the accelerator and brake pedals at 
the same time. In such an event the Master gives priority 
to the brake and deletes the fuel injection task from the 
task array. This action reduces the engine torque and the 
driver will be able to bring the vehicle to a controlled 
stop through the brake. The reason for this action is that 
we know; braking against maximum torque of the engine 
is difficult and dangerous (dangerous in a sense that it 
may burn-out the brakes and the driver will lose all 
safe-vehicle-stopping- control). Simulation methods that 

were used for such faults are described in Fig. 2 above.

LIMITATION & FURTHER WORK

The only obvious limitation of the proposed meth-
odology as was described in (Amir et al., 2013) is the 
hardware limit of the Master that only houses four 
CAN interfaces in order to interact with the Slaves. For 
removing this limitation, further work will be carried out 
in the near future to come up with an FPGA (Xilinx, 
2017) based CAN-Star design with enhanced CAN inter-
face selectivity needed for a range of other demanding 
applications. 

CONCLUSIONS

The main concern of our research is safety; as we all 
put our lives on a daily bases in the hands of embedded 
systems that are invisible to us. We expect such systems 
to be flexible towards fault-management and behave in 
a safe manner. Here in this paper, we have presented 
System’s Response Timings to a certain set of simulated 
System’s Level Faults using a proposed methodology. 
Finally, it can be concluded that besides managing faults 
on embedded level, the proposed star topology with a 
SC protocol-based Port Guardian (PG) mechanism can 
help towards managing faults on System’s level as well.
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APPENDIX: Pseudocode of the Port Guardian (PG) mechanism in TTC-SC7 protocol 
(fault-confinement plus fault-tolerance)


