
73

ISSN 1023-862X - eISSN 2518-4571J. Engg. and Appl. Sci. Vol.36 No,2 July - December 2017

FAULT-MANAGEMENT ON SYSTEM’S LEVEL IN CONTROLLER AREA
NETWORK BASED “SHARED-CLOCK” ENVIRONMENTS

Muhammad Amir*1, Syed Waqar Shah1, Michael J. Pont2

ABSTRACT

Shared-Clock (SC) architectures based on the Controller Area Network (CAN) protocol have been inherently
plagued by flexibility and fault-management issues since they were introduced. The easiest way out of such issues
is to adopt the more flexible/fault-manageable but expensive protocols such as the Time-Triggered Protocol (TTP)
and FlexRay. Looking at the cost-effective nature of CAN and its widespread use, we started working on making
such SC architectures more flexible and fault-manageable on embedded level as demonstrated by our previous work
“Improving flexibility and fault-management in CAN-based “Shared-Clock” architectures”, published in ELSEVIER
Journal of Microprocessors and Microsystems (Volume 37, 2013, issue 1, pages 9-23). In this paper, we intend to
show that the use of a Port Guardian (PG) mechanism can also improve fault-management on system’s level.

KEYWORDS: Controller Area Network (CAN); Fault-Management; Topology; Time-Triggered Systems

1* Department of Electrical Engineering, University of Engineering and Technology, Peshawar, Pakistan.
2 Safety Systems TM Ltd, Registered Office 15 Nether End, Great Dalby, LE14 2EY, UK.

INTRODUCTION

The Controller Area Network (CAN) protocol is exten-
sively used in automotive, process control and industrial
applications (Fredriksson, 1994), (Pazul, 1999), (Farsi
& Barbosa, 2000) & (Etschberger, 2001). Due to such
utility, most modern microcontroller families provide
support for it (Philips, 1996), (Siemens, 1997), (Infineon,
2000) & (Philips, 2004). As mentioned earlier in (Amir
et al., 2013) with several limiting issues. Of particular
concern in this paper is the non-support of CAN for
fault-management on system’s level due to its original
bus topology. Building on the CAN topology migration
platform built in (Amir et al., 2013), in this paper, the
same Port Guardian (PG) mechanism is used in order
to demonstrate (with results) that fault-management on
system’s level in Shared- Clock (SC) architectures can
also be achieved.

This paper is organized as follows: Section 2 presents
the setup used for simulating the conditions in which
certain system’s level faults may occur. A model of such
particular “Setup-related-faults” is also given in this
section. In Section 3, we describe how system level faults
are simulated inside a CAN-Star-based SC environment
and present the system’s response timings of managing
such faults. Section 4 presents limitations of the proposed
methodology and suggests further improvements. Finally,
Section 5 presents our conclusions.

ENGAGED SETUP

Electronic Throttle Control System (ETCS)

The setup used for the purpose of this paper is shown
in Fig. 1 and is the same setup presented in (Amir et
al., 2013). The ETCS shown in Fig. 1 is a hardware
prototype assembled using Olimex development boards
(Olimex, 2017). The Slaves in this setup, in electronic
throttle control mode, run a single task (Slave 1and Slave
2 each run a sensing task which senses the accelerator
pedal position while Slave 3 & 4 each run an actuation
task which actuates the throttle control motor).

In Fig. 1, Slave 2 acts as a backup for Slave 1 while
Slave 4 backups Slave 3. The Masters on the other hand
each run three tasks (i.e. Fuel Injection/Ignition/Emissions
control) while deploying the TTC-SC7 protocol (Amir
et al., 2013) using the PG mechanism. Regarding scal-
ability, the ETCS setup in Fig. 1 is capable enough to
perform its main function and can also schedule other
automotive-management tasks (e.g. Cruise Control, ABS
Control, Traction Control etc) using the time-triggered
co-operative task schedulers on the Master and Slave
nodes. It is worth mentioning here that the methods
proposed in this paper as well as in (Amir et al., 2013)
are not just confined to ETCSs. The ETCS is used here
as a system test case in order to show the ability of
the proposed approach in improving fault-management
in CAN-based safety-critical embedded designs. Other

74

ISSN 1023-862X - eISSN 2518-4571J. Engg. and Appl. Sci. Vol.36 No,2 July - December 2017

safety-critical applications of the proposed approach
where embedded or system level faults may occur include:
Industrial Process Control; Static and Portable Traffic
Lights Control; Level Crossing Signal Control; Air Traffic
Control; Weapons Systems (e.g. Surface to Air Missile
Batteries); Intra-Satellite Networking; Automated Motor
Vehicles (e.g. Mars Rover or Bomb Disposal Robots);
Medical Monitoring Equipment; Locomotive Braking
Systems; Avionics; Fire Alarm Systems; Intruder Alarm
Systems (Security Systems) and Industrial Robotics.
The proposed design in this paper is based on the TT
architecture and as a well established fact; systems based
on such architectures are highly predictable and reliable
(Kopetz, 2000) and (Short & Pont, 2007). Also, such
features are an essential requirement in safety-critical
applications (Kopetz, 2000).

System’s Level Faults in the ETCS Setup

Faults related to the setup used for this case study
are described in this section as follows.

Sensor Failure or Malfunction

In ETCS based automobiles, sensors are deployed at
both ends i.e. for sensing the position of the accelerator
pedal as well as for sensing throttle position. A mal-
function at any end will provide erroneous data to the
onboard computer and will degrade the efficiency and
safety of the driver’s environment. A sensor failure at
either end will also have the same effect on the integrity
of the environment.

Throttle Control Motor (TCM) Failure or
Malfunction

A TCM failure or malfunction will not replicate the
proportional mechanical movement of throttle as dictated
through the data sent from the onboard computer. In
turn, for example, the TCM will not bring the speed of
the vehicle down (at this time the driver is removing
or has removed his/her foot from the accelerator pedal)
as it might have failed or malfunctioned at a full-open-
throttle position. This fault will put the safety of the

Figure 1: Electronic Throttle Control System (ETCS) schematic.

75

ISSN 1023-862X - eISSN 2518-4571J. Engg. and Appl. Sci. Vol.36 No,2 July - December 2017

driver in jeopardy as the vehicle will speed up instead
of slowing down.

Stuck Throttle Fault

This fault might be a consequence of TCM failure/
malfunction or some other mechanical anomaly like
Gunk accumulation in throttle body. A stuck throttle fault
will render the throttle movement stuck at one place in
relation to the accelerator pedal position sensor’s data
sent by the onboard computer.

Stuck Accelerator Pedal (SAP) Fault

There are different reasons such as mechanical or
design based anomalies which may cause an acceler-
ator pedal to get stuck at any position. An SAP fault
at a maximum position is most worrying as it creates
hysteria for the driver which will cause further mistakes
e.g. turning the ignition OFF which causes the power
steering to shutdown. Consequently, it makes it pretty
difficult to bring the vehicle to a safe stop.

FAULT SIMULATION METHODS & RESULTS

System’s level faults described in previous section
were simulated through an ETCS (shown in Fig. 1)
designed by using LPC-E2294 rev.B development
boards (Olimex, 2017) as Masters and LPC2378-STK
development boards (Olimex, 2017) as Slaves. Fault
simulation methods are described in Fig. 2. In Table 1,
SWT represents “System Wait Time”; “Fault Duration”
is represented by FD while the “Response Time” of the
PG mechanism is represented by RT as were in (Amir
et al., 2013).

As was for embedded level faults in (Amir et
al., 2013), the PG mechanism (given as reference in
Appendix) checks “Fault Intermittency” for certain
system’s level faults as well using the SWT as shown in
Table 1. Which means that if the fault duration is greater
than the system wait time? Only then the PG mechanism
will deploy its redundancy routine by switching to a
backup node (see Appendix). Otherwise, it will keep on
running the setup in its original configuration as shown
in Fig. 1. Original configuration here means the state of
the setup before fault-injection.

Table 1: PG mechanism’s response timings (RTs) related to faults on system’s level.

Fault SWT – FD PG Response RT

Sensor failure or mal-
function

Slave 1 transmits an
empty Ack message

3s – 6s Slave 2 Engaged 1.1084 ms
3s – 2s Slave 1 Continued -

Slave 3 transmits an
empty Ack message

3s – 6s Slave 4 Engaged 1.1086 ms
3s – 2s Slave 3 Continued -

Slave 2 transmits an
empty Ack message

3s – 6s Delete Task Array 14.45 µs
3s – 2s Slave 2 Continued -

Slave 4 transmits an
empty Ack message

3s – 6s Delete Task Array 14.45 µs
3s – 2s Slave 4 Continued -

TCM failure or mal-
function

Slave 3’s APF (Returns
Error)

3s – 6s Slave 4 Engaged 1.1083 ms
3s – 2s Slave 3 Continued -

Slave 4’s APF (Returns
Error)

3s – 6s Delete Task Array 14.46 µs
3s – 2s Slave 4 Continued -

Stuck throttle fault RT approximately same as TCM failure or malfunction
Stuck Accelerator Pedal

(SAP) fault
APPSs value max + EINT0 Occurrence Delete Task Array 3.32 µs
APPSs value max + EINT1 Occurrence Delete Task Array 3.322 µs

Stuck Accelerator Pedal
(SAP) fault

APPSs value (any non-zero position) + EINT0
Occurrence

Delete Task Array 3.31 µs

APPSs value (any non-zero position) + EINT1
Occurrence

Delete Task Array 3.32 µs

76

ISSN 1023-862X - eISSN 2518-4571J. Engg. and Appl. Sci. Vol.36 No,2 July - December 2017

The fault-management response times for the engaged
setup shown in Fig. 1 and the PG mechanism (Appendix)
towards system level faults are given in Table 1. Where,
APF means “Acknowledgement Processing Function”
inside the Master scheduler. Please note that EINT0 and
EINT1 in Table 1 are two redundant external interrupt
lines connected to the brake of the vehicle. These lines
in turn simulate a Brake Override Mechanism (BOM)).
The BOM works in an event if the accelerator pedal is
stuck at the maximum depressed position (or any non-
zero position) and the driver is trying to brake.

It is our understanding that in normal driving practice
drivers does not press the accelerator and brake pedals at
the same time. In such an event the Master gives priority
to the brake and deletes the fuel injection task from the
task array. This action reduces the engine torque and the
driver will be able to bring the vehicle to a controlled
stop through the brake. The reason for this action is that
we know; braking against maximum torque of the engine
is difficult and dangerous (dangerous in a sense that it
may burn-out the brakes and the driver will lose all
safe-vehicle-stopping- control). Simulation methods that

were used for such faults are described in Fig. 2 above.

LIMITATION & FURTHER WORK

The only obvious limitation of the proposed meth-
odology as was described in (Amir et al., 2013) is the
hardware limit of the Master that only houses four
CAN interfaces in order to interact with the Slaves. For
removing this limitation, further work will be carried out
in the near future to come up with an FPGA (Xilinx,
2017) based CAN-Star design with enhanced CAN inter-
face selectivity needed for a range of other demanding
applications.

CONCLUSIONS

The main concern of our research is safety; as we all
put our lives on a daily bases in the hands of embedded
systems that are invisible to us. We expect such systems
to be flexible towards fault-management and behave in
a safe manner. Here in this paper, we have presented
System’s Response Timings to a certain set of simulated
System’s Level Faults using a proposed methodology.
Finally, it can be concluded that besides managing faults
on embedded level, the proposed star topology with a
SC protocol-based Port Guardian (PG) mechanism can
help towards managing faults on System’s level as well.

ACNOWLEDGEMENT

We would like to thank the research community for
striving towards enhancing the safety-critical features
of embedded systems and treating them of having par-
amount importance.

REFERENCES

1.	 Amir, M., & Pont, M. J., (2013), “Improving flexibility
and fault-management in CAN-based “Shared-
Clock” architectures”, Journal of Microprocessors
and Microsystems, Vol. 1, Issue 37, pp. 9-23.

2.	 Etschberger, K., (2001), “Controller Area Network:
Basics, Protocols, Chips and Applications”, IXXAT
Automation GmbH.

3.	 Farsi, M., & Barbosa, M., (2000), “CANopen
Implementation: Applications to Industrial

1.	Sensor failure or malfunction: A conditional loop
was kept inside the scheduler Update function of a
particular Slave (i.e. Slave 1, Slave 2, Slave 3 or Slave
4) which caused the Slave’s scheduler to send empty
Acknowledgements (Ack messages) to the Master for
the fault duration (i.e. loop duration). In the current
simulations, the conditional loop took effect 30 s after
system power up. An approximate response time was
observed on the oscilloscope when the ADC’s on the
Slaves were deliberately mismatched.

2.	TCM failure or malfunction: For this simulation,
the values of the ADC’s on Slave 1 and Slave 3 were
kept the same. A conditional loop was kept inside the
APF for Slave 3 on the Master node which subtracted
a constant value from the matched ADC value sent by
Slave 3 thus causing a mismatch between the value sent
by Slave 1 and the value sent by Slave 3. Consequently,
the APF for Slave 3 on the Master node returned an
“ERROR” for the duration of the fault (loop duration).
The same procedure was adopted for Slave 1 and Slave
4.

Figure 2: Descriptions of system’s level faults
simulations.

77

ISSN 1023-862X - eISSN 2518-4571J. Engg. and Appl. Sci. Vol.36 No,2 July - December 2017

Networks”, U.K.: Research Studies Press Ltd.

4.	 Fredriksson, L. B., (1994), “Controller area networks
and the protocol CAN for machine control systems”,
Mechatronics, Vol. 4, Issue. 2, pp. 159-192.

5.	 http://www.olimex.com/Products, accessed on
29/12/2017 at 2200PST.

6.	 http://www.xilinx.com, accessed on 29/12/2017 at
2200PST.

7.	 Infineon., (2000), “C167CR Derivatives 16-Bit
Single-Chip Microcontroller”, Infineon Technologies.

8.	 Kopetz, H., (2000), “A comparison of CAN and
TTP”, Annual Control Review, Vol. 24, pp. 177–188.

9.	 Pazul, K., (1999), “Controller Area Network (CAN)
Basics”, Microchip Technology Inc, Preliminary
DS00713A, Page 1 AN713.

10.	 Philips., (1996), “P8×592 8-bit Microcontroller with
on-Chip CAN Datasheet”, Philips Semiconductor.

11.	 Philips., (2004), “LPC2119/2129/2194/2292/2294
Microcontro l ler User Manual” , Ph i l ips
Semiconductor.

12.	 Short, M. J., & Pont, M. J., (2007), “Fault-Tolerant
Time-Triggered Communication Using CAN”, IEEE
transactions on Industrial Informatics, Vol. 3, Issue
2, pp. 131-142.

13.	 S iemens . , (1997) , “C515C 8-b i t CMOS
Microcontroller User’s Manual Siemens”.

78

ISSN 1023-862X - eISSN 2518-4571J. Engg. and Appl. Sci. Vol.36 No,2 July - December 2017

APPENDIX: Pseudocode of the Port Guardian (PG) mechanism in TTC-SC7 protocol
(fault-confinement plus fault-tolerance)

