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INTRODUCTION

An operating CANDU-type nuclear power plant
of 137 MWe rating is considered in this research
work. CANDU Reactor power is controlled by differ-
ent means. Amongst different means of power ma-
nipulation, the modulation of moderator level control
valve is the most worthwhile. The modulation of this
control valve is responsible for reactivity variation in
the reactor core that in turns adjusts the reactor power.
The existing reactivity controller is a networked con-
troller implemented on distributed Programmable Logic
Controllers (PLCs). All control logic changes are ven-
dor supported1 and therefore this reactivity control
system is supposed to be a Black Box for this design
engineering. Hence, it is required to identify this black
box controller through thorough investigations of
existing networked reactivity controller so as to de-
sign a novel controller mimicking the existing con-
trols.

A spatial decentralized periodic output feedback
controller for 540 MWe PHWR has been designed in2
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using liquid zone control concept. A discrete higher
order nonlinear spatial sliding mode controller has
been suggested for the same Indian 540 MWe PHWR
in3. A model predictive power controller and robust
power controller for the same CANDU-type PHWR1

have been proposed in4,5 using CARIMA predictive
control design and H” robust control design algo-
rithms respectively. A PID controller has been de-
signed and tuned using artificial neural network for
PWR pressurizer water level controller in6. A Distrib-
uted Control System (DCS) based core monitoring
system for 600 MWe CANDU has been designed in7

for flux and channel powers using programmable logic
controllers configured in distributed configuration. A
Controller Area Network (CAN) based networked
controller has been suggested in8 for a power plant
and design issues related to CAN have been pre-
sented for power plant applications. A DCS based
instrumentation and control has been reviewed in
detail for nuclear, primary and secondary loops for
nuclear power plant in9. A networked controller has
been designed for PWR pressurizer light water level
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controller in10 that compensates the reactor coolant
pressure dynamics which is associated with water
and steam ratio in pressurizer. A network fuzzy PID
controller has been proposed for power plant steam
temperature control in11 addressing the process, net-
work and system delays. A fuzzy logic based intelli-
gent DCS control system has been designed for fossil
power plant in12 using Mamdani type inference engine
in MATLAB environment. A neural network tuned
PID controller has been designed for networked mul-
tivariable cascaded chemical processes in13.

In this research work, a novel design approach
has been adopted for replacing networked reactiv-
ity controller using intelligent cascaded Multi-In-
put Multi-Output (MIMO) and Multi-Input Single-
Output (MISO) sub-controllers due to coupled in-
ternal dynamics of inputs and outputs of conven-
tional controller parameters without loss of para-
metric information and to minimize Mean Square
Error (MSE) with fast convergence for both mod-
erator valve position and reactor power in distrib-
uted parallel configuration with robust performance
for a CANDU-type nuclear power plant. One Intel-
ligent Distributed Cascaded Power Controller
(IDCPC) has been designed using one MIMO and
two MISO sub-controllers. The MIMO sub-control-
ler has been designed to control steam pressure
offset compensation, stream pressure rate compen-
sation, steam pressure compensation, reactor power
demand, power correction factor and turbine de-
mand while the two MISO sub-controllers have been
designed to control computed reactor power set-
point and compensated reactor power respectively.
Second Intelligent Cascaded Moderator Level Con-
troller (ICMLC) has been designed using one MIMO
and one MISO sub-controllers. The MIMO sub-
controller has been designed to control moderator
level compensation, logarithmic power compensa-
tion, rate logarithmic power compensation, power
mismatch compensation, low log compensation,
valve bias and total control demand while the MISO
sub-controller has been designed to control mod-
erator valve position. A neural network network
based control design strategy has been adopted
because a three layer ANN architecture is relatively
easy and simple in complexity for multivariable in-
telligent controller design as compared to fuzzy logic
based intelligent controller design.

DISTRIBUTED NETWORKED REACTIVITY
CONTROLLER

The reactivity controller of CANDU-type nuclear
power plant is implemented on a DCS. The DCS is
basically a networked control system. It uses plant
Local Area Network (LAN) and a very specialized PLC
based controller called AC-132-16 controller. It is a
proven technology adopted from a Belgium nuclear
power plant1. This controller is modular in nature and
has a wide library of analog and digital control mod-
ules but has limited modification and data trending
facility. All process parameters are acquired from the
plant via process sensors while neutronic parameters
via ion chambers or nuclear detectors. Since the reac-
tivity controller has multiple set-points and multiple
feedback signals and therefore it is called a multivari-
able controller. The implementation of reactivity con-
troller on DCS is a huge physical setup and is pre-
sented in a simplified block diagram form as shown in
Figure 1.

Nuclear instrumentation system is used for lin-
ear reactor power, logarithmic reactor power and rate
of change of logarithmic reactor power measurements
while plant temperature monitoring system is used for
core inlet header temperature, core outlet temperature
and primary coolant flow. Plant load controller is a
MWe demand setter which has corresponding value
in % RP (Reactor Power). This controller is interfaced
with networked reactor power controller. The plant
sensors, AC-132-16 controller, converters and actua-
tors forms a CANDU process sensored network for a
reactor power regulating system as shown in Figure
1. The reactor power regulating system is basically a
fine and very slowly progressing power control sys-
tem based on reactivity perturbation in reactor core.
All the necessary parameters are shown in Figure 1.
All process and controller parameters are not static in
nature and therefore parameters have dynamic values
under plant different conditions. The parametric varia-
tions are discussed in detail in both tabular and graphi-
cal forms.

INTERACTION OF REACTIVITY CONTROLLER
WITH CONTROL AND MONITORING LOOPS

The networked reactivity controller is coupled
with various other control and monitoring loops as
shown in Figure 2.
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Figure 1: Candu Process Sensored Network For Reactor Regulating System

Figure 2: Integration of Different Control Loops with Intelligent Reactivity Controller for a nuclear power plant
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Figure 3: Design configuration cascaded moderator level and distributed cascaded power controller for nuclear
power plant

Figure 4: Design Configuration of New Intelligent
Cascaded Reactivity Controller for Nuclear
Power Plant

Figure 5: Variation of MU with Epochs for Moderator
Level Controller
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The CANDU networked reactivity controller is
interfaced with following control and monitoring loops:

1) Plant temperature monitoring system

2) Nuclear instrumentation system

3) Primary flow control system

4) Plant load control system

DESIGN ANALYSIS OF CASCADED NET-
WORKED REACTIVITY CONTROLLER

The reactor power of CANDU reactor is con-
trolled mainly by means of reactivity controller which
is responsible for moderator level rise or fall in the
reactor core although there reactor power can also be
controlled by rod controller and chemical shim con-
troller. But new controller is designed for a scenario
in which chemical shim and rod controllers are inac-
tive. Therefore, in this scenario, the reactivity con-
troller is basically a cascaded controller consisting of
reactor power controller and moderator level control-
ler. The reactor power controller is a distributed cas-
caded networked controller which is composed of three
sub-controllers A1, A2 and A3. The inputs and out-
puts of reactor power controller are tabulated in Tables
1 and 2 respectively. The moderator level controller is
a cascaded networked controller which is composed
of two sub-controllers B1 and B2. The inputs and
outputs of moderator level controller are tabulated in
Tables 3 and 4 respectively. After thorough investi-
gations, a detailed design of cascaded networked
reactivity controller is developed which is shown in
Figure 3.

SYNTHESIS OF NEW INTELLIGENT CASCADED
REACTIVITY CONTROLLER

An intelligent system is one that mimics a physi-
cal system treating it as black box and maps its dy-
namics in nonlinear form while a cascaded system
consists of two or more sub-systems and is config-
ured in such a way that the output of first sub-system
acts likes an input for second sub-system and so
forth. A cascaded system helps in capturing the de-
tailed internal dynamics of a complex large scale sys-
tem for parametric analysis and design12.

In this research work, a new intelligent cascaded
reactivity controller has been proposed for an oper-

ating CANDU-type nuclear power plant. The proposed
controller is designed using data driven approach in
a closed loop configuration.

Neural Network Based Reactivity Controller

As the original networked reactivity controller
is a multivariable controller, therefore, an artificial in-
telligence based controller is the best choice for con-
trol synthesis. The new reactivity controller mimics
the same control structure in neural environment.

Internal Dynamics of Neural Sub-Controllers

Each neural sub-controller of intelligent distrib-
uted cascaded power controller (IDCPC) and intelli-
gent cascaded moderator level controller (ICMLC) has
three layer topology.

The basic design of each neural sub-controller
has an adaptive feed forward architecture. Each neu-
ral sub- controller is designed using standard Back
Propagation Algorithm (BPA) optimized by Gradient
Decent Learning Rule (GDLR)13.

The level of complexity of each neural sub-con-
troller depends on the selection of neurons in hidden
layer. Each neural sub-controller is of sufficiently high
dimension.

Intelligent Distributed Cascaded Power Controller

The intelligent distributed cascaded controller
consists of three neural sub-controllers. Neural sub-
controllers A1N and A2N form first cascaded con-
figuration while neural sub-controllers A1N and A3N
form second cascaded configuration. Both these cas-
caded configurations form intelligent distributed cas-
caded configuration of reactor power controller as
shown in Figure 3.

Intelligent Cascaded Moderator Level Controller

The intelligent cascaded moderator level con-
troller consists of two neural sub-controllers. Neural
sub-controllers B1N and B2N form a cascaded con-
figuration as shown in Figure 3.

Selection of Shaping Function for Neural Sub-
Controllers

Since the dynamics of each sub-controller is
highly nonlinear, therefore, a sigmoid type shaping
function is chosen for each neural sub-controller
synthesis as it is best suited for highly nonlinear
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dynamical systems6. The sigmoid type shaping func-
tion is a nonlinear function and can be mathematically
represented as:

 where mu is called the shaping parameter.

Synthesis of Performance Indices for Reactor
Power Controller

Since, the intelligent distributed cascaded power
controller is a combination of multiple neural sub-
controllers, so a separate performance index has to be
defined for each neural sub-controller.

If uA1 is an input vector for neural sub-control-
ler- A1N, yA1 is an output vector for sub-controller-
A1 and yA1N  is an output vector for neural sub-con-
troller- A1N then input vector and output vector of
sub-controller- A1and output vector of MIMO neural
sub-controller- A1N can be formulated as:

Now, the objective is to formulate the problem
for the optimization of a neural sub-controller-A1N.
The performance index of a MIMO neural sub-con-
troller-A1N in terms of mean square error can be for-
mulated as:

Similarly, if uA2N is a neural input vector for neural
sub-controller- A2N, yA2 is an output for sub-control-
ler- A2 and yA2N is an output for neural sub-controller-
A2N then input vector and output for sub-controller-
A2 and output for neural sub-controller- A2N can be
formulated as:

Now, the objective is to formulate the problem
for the optimization of a neural sub-controller-A2N.
The performance index of a MISO neural sub-control-
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ler-A2N in terms of mean square error can be formu-
lated as:

Similarly, if uA3N is a neural input vector for
neural sub-controller- A3N, yA3 is an output for sub-
controller- A3 and yA3N is output for neural sub-con-
troller- A3N then input vector and output for sub-
controller- A3 and output for neural sub-controller-
A3N can be formulated as:

Now, the objective is to formulate the problem
for the optimization of a neural sub-controller-A3N.
The performance index of a MISO neural sub-control-
ler-A3N in terms of mean square error can be formu-
lated as:

Synthesis of Performance Indices for Moderator
Level Controller

Since, the intelligent cascaded moderator level con-
troller is combination of multiple neural sub-control-
lers, so a separate performance index has to be de-
fined for each neural sub-controller.

If uB1M is a mixed input vector for neural sub-
controller- B1N, yB1 is an output vector for sub-con-
troller- B1and yB1N is an output vector for neural sub-
controller- B1N then input vector and output vector
for sub-controller- B1and output vector for MIMO
neural sub-controller- B1N can be formulated as:

Now, the objective is to formulate the problem
for the optimization of a neural sub-controller-B1N.
The performance index of a MIMO neural sub-con-
troller-B1N in terms of mean square error can be for-
mulated as:
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type nuclear power plant in Pakistan. These 8613
patterns are divided into three sets of data known as
training, testing and validation datasets respectively.
Training dataset contains 60% patterns (5169 samples),
testing dataset contains 20% patterns (1722 samples)
and validation dataset contains 20% patterns (1722
samples). Similarly, total 2782 patterns of inputs and
output of IDCPC are acquired. These 2782 patterns
are divided into three sets of data known as training,
testing and validation datasets respectively. Training
dataset contains 60% patterns (1670 samples), testing
dataset contains 20% patterns (556 samples) and
validation dataset contains 20% patterns (556 samples).
Therefore, all the design parameters of both IDCPC
and ICMLC are tabulated in Tables 7 and 8 respec-
tively.

In IDCPC, as the design topology for neural
sub-controller-A1N is 7-40-6 which is quite obvious
from Figure 3. Therefore, the dimensions of hidden
and output weight matrices and bias matrices of neu-
ral sub-controller-A1N are 40×7, 40×6, 6×40 and 6×6
order matrices respectively. Similarly, as the design
topology for neural sub-controller-A2N is 3-40-1 which
is quite obvious from Figure 3. So, the dimensions of
hidden and output weight matrices and bias vectors
of neural sub-controller-A2N are 40×3 order matrix,
40×1 order vector, 1×40 order vector and 1×1 single
element respectively. In a similar way, as the design
topology for neural sub-controller-A3N is 2-40-1 which
is quite obvious from Figure 3. So, the dimensions of
hidden and output weight matrices and bias vectors
of neural sub-controller-A3N are 40×2 order matrix,
40×1 order vector, 1×40 order vector and 1×1 single
element respectively.

In ICMLC, as the design topology for neural
sub-controller-B1N is 5-20-7 which is quite obvious
from Figure 3. Therefore, the dimensions of hidden
and output weight matrices and bias vectors of neural
sub-controller-B1N are 20×5 order matix, 20×7, 7×20
and 7×7 order matrices respectively. Similarly, as the
design topology for neural sub-controller-B2N is 7-
20-1 which is quite obvious from Figure 3. So, the
dimensions of hidden and output weight matrices and
bias vectors of neural sub-controller-B2N are 20×7
order matrix, 20×1 order vector, 1×20 order vector and
1×1 single element respectively.

Since in low power mode, the variations of
moderator level controller parameters are visible while
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Similarly, if uB2N is a neural input vector for
neural sub-controller- B2N, yA2 is an output for sub-
controller- B2 and yB2N is an output for neural sub-
controller- B2N then input vector and output for sub-
controller- B2N and output for neural sub-controller-
B2N can be formulated as:

Now, the objective is to formulate the problem
for the optimization of a neural sub-controller-B2N.
The performance index of a MISO neural sub-control-
ler-B2N in terms of mean square error can be formu-
lated as:

RESULTS AND DISCUSSION

Now, in this section, the proposed design phi-
losophy is evaluated for a CANDU-type nuclear power
plant.

The design of proposed intelligent distributed
cascaded reactivity controller is a plant model-free
controller. Therefore, its training, testing and valida-
tion phases are carried out in a closed loop environ-
ment. The closed loop framework of a proposed con-
troller is shown in Figure 4. The optimum neurons in
the hidden layer are selected through an optimization
program developed in MATLAB for both IDCPC and
ICMLC. The process of optimization is carried out in
which number of neurons are increased gradually and
MSE is checked against each simulation experiment
and hence based on minimum MSE, the optimum
number of neurons are picked for both IDCPC and
ICMLC and are found 40 and 20 neurons respectively.
The variation of shaping factor mu for moderator level
controller is shown in Figure 5. If p is the number of
neurons in input layer (i.e. input nodes), q is the
number of neurons in the hidden layer (i.e. hidden
layer nodes) and r is the number of neurons in output
layer (i.e. output nodes) then a neural network design
topology can be expressed as p-q-r. Therefore, the
design topologies of each neural sub-controller for
IDCPC and ICMLC are shown in Tables 5 and 6 re-
spectively. Total 8613 patterns of inputs and output
of ICMLC are acquired from an operating CANDU-
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Figure 6: Comparison of measured and predicted tran-
sient compensation
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Figure 7: Comparison of measured and predicted
power mismatch compensation
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Figure 8: Comparison of measured and predicted valve
bias compensation

80

75

70

65

60

55

50

45

V
a
lv

e
 B

ia
s
 (

%
)

0 1000 2000 3000 4000 5000 6000 7000 8000

Time (Sec)

Measured Output
Predicted Output

Figure 9: Comparison of measured and predicted
moderator valve position
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Figure 10: Comparison of measured and predicted
steam pressure off-set compensation
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Figure 11: Comparison of measured and predicted
steam pressure rate compensation
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Figure 13: Comparison of measured and predicted re-
actor demand power

Figure 12: Comparison of measured and predicted
steam pressure compensation
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Table 2: Output paramters of intelligent cascaded
power controller

Parameters Definitions

 ySPO(k) Steam Pressure Off-Set Compensation (%)

 ySPR(k) Steam Pressure Rate Compensation (%)

 ySP(k) Steam Pressure Compensation (%)

 PTD(k) Turbine Demand Power (%)

 PRD(k) Reactor Demand Power (%)

 yPCF(k) Power Correction Factor

 PCR(k) Compensated Reactor Power (%)

 xNSETC(k) Computed Reactor Power Set-point (%)
in SP Mode

 xNSETM(k) Manual Reactor Power Set-point (%)

Table 3: Input paramters of intelligent cascaded mod-
erator level controller

 Parameters Definitions
 xMLset(k) Moderator Level Set-Point (inches)
 xML(k) Moderator Level (inches)
 xNset(k) Linear Reactor Power Set-Point (%)
 xN(k) Linear Reactor Power (%)
 xLNset(k) Log Reactor Power Set-Point (decades)
 xLN(k) Log Reactor Power (decades)
 xRLNset(k) Rate Log Reactor Power Set-Point (%/sec)
 xRLN(k) Rate Log Reactor Power (%/sec)
 PTD(k) Turbine Demand Power (%)
 PCR(k) Compensated Reactor Power (%)Table 1: Input paramters of intelligent cascaded power

controller
Parameters Definitions
xMWset(k) MWe Set-Point (%)
xN(k) Linear Reactor Power (%)
xSPset(k) Steam Pressure Set-Point (Psig)
xSP(k) Steam Pressure (Psig)
xSFN(k) Steam Flow North (%)
xSFS(k) Steam Flow South (%)
xIHT(k) Inlet Header Temperature (°F)
xOHT(k) Outlet Header Temperature (°F)
xPCF(k) Primary Coolant Flow (lb/hr)

Table 4: Outputs paramters of intelligent cascaded
moderator level controller

Parameters Definitions
yML(k) Moderator Level Compensation (%)
yLN(k) Log N Compensation (%)
yRLN(k) Transient Compensation (%)
yPM(k) Power Mismatch Compensation (%)
yLL(k) Lead-Lag Compensation (%)
yVB(k) Valve Bias (%)
uTCD(k) Total Control Demand (%)
uMVP(k) Moderator Valve Position (%)
%VSD (k) % Valve Stoke Demand (% Open)

Table 5: Design topology of intelligent cascaded
power controller

Neural Sub-Controller Topology
Neural Sub-Controller-A1N 7-40-6
Neural Sub-Controller-A2N 3-40-1
Neural Sub-Controller-A3N 2-40-1

Table 6: Design topology of intelligent cascaded
moderator level controller

Neural Sub-Controller Topology
Neural Sub-Controller-B1N 6-20-7
Neural Sub-Controller-B2N 7-20-1

reactor power controller parameters are not visible
because reactor power is too low while approaching
to reactor criticality. Whereas in high power mode,
the variations of moderator level controller param-
eters are not visible while reactor power controller

parameters are visible because in high power mode,
reactor power controller parameters become indepen-
dent of moderator level. Thus, the cascading of both
controllers results in coverage of all parameters of
reactivity controller. Therefore, patterns or discrete

Figure 14: Comparison of measured and predicted
compensated reactor power
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´δ

samples are different for IDCPC and ICMLC. All pat-
tern information and their sub classification for both
IDCPC and ICMLC are clearly described in Tables 7
and 8 respectively.

The proposed cascaded reactivity controller is
implemented for an operating CANDU nuclear power
plant in Pakistan1. Since input and output parameters
for IDCPC and ICMLC are large, therefore, some im-
portant parameters of interest are selected for analy-
sis purposes. The variation of transient compensa-
tion, power mismatch compensation, valve bias and

moderator valve position of ICMLC are shown in
Figures (6)-(9). In Figure 6, the variation of transient
compensation expressed in percentage is shown. The
parameter transient compensation covers internally
the impact of linear power, logarithmic power, rate
logarithmic power and moderator valve bias. Since in
this research work, a reactor power transient case has
been presented in which initially the power is de-
creased from steady power level of 45% and then it
is allowed to stabilize at 45% again. Therefore, the
transient compensation parameter hunts around 0%
value. So, initially this parameter initially has highly
fluctuating negative value and then after 3500 sec-
onds it has fluctuating positive value and ultimately
settles down to zero when power transient stabilizes.
In Figure 7, power mismatch compensation in percent-
age is shown. Power mismatch covers the compensa-
tion of turbine and reactor power and it should have
-80% stable values throughout the transient. This
value is set by the vender as reported in1. In Figure
8, a parameter value bias in percentage is shown. This
parameter is provided to cover controller bias value in
case proportional moderator valve demand failure.
Therefore, it is a compensation parameter and it drifts
as the moderator valve demand position changes. In
Figure 9, the moderator valve position starts from
100% and during the transient it dynamically changes
and ultimately settles down to 25% final value. The
parametric variation of this moderator valve position
depends on several other parameters as shown in
Figure 3. All trends show excellent tracking of con-
troller parameters. The variations of steam pressure
off-set compensation, steam pressure rate compensa-
tion, steam pressure compensation and reactor de-
mand power and compensated reactor of IDCPC are
shown in Figures (10)-(14). In Figure 10, steam pres-
sure off-set compensation in percentage is shown.
This parameter covers the error fluctuation between
steam pressure set-point (i.e. 550 psig) and measured
steam pressure in psig when proportional and integral
modes fluctuates during transient operation of nuclear
power plant in high power mode. Therefore, finally, it
should reach the same value from where it was ini-
tialed. In Figure 11, stream pressure rate compensa-
tion is expressed in percentage. It covers the derivate
part of steam pressure fluctuations. Therefore, it is
highly fluctuating in nature and hence stabilizes at
0%. In Figure 12, steam pressure compensation is
shown in percentage. It deals with successive steam
pressure fluctuations. Therefore, it initially it fluctu-
ates in staircase manner and ultimately settles down
at constant value of 2% as reported in1. In Figure 13,
reactor demand power is shown in percentage. A
reactor power transient has been introduced from a

Table 8: Design parameters of intelligent distributed
cascaded power controller in high power
mode

Design Parameters Values
Total Number of Patterns (100%) 2782
Number of Training Patterns ( 60%) 1670
Number of Testing Patterns ( 20%) 556
Number of Validation Patterns ( 20%) 556
Number of Each Network Layers 3
Optimum Number of Neurons in 20
Hidden Layer
Target MSE 0
Achieved Performance (MSE) 0.001801
Linear Regression 0.9996
Initial Shaping Factor (mu) 0.001
Target Epochs 100

Table 7: Design parameters of intelligent cascaded
moderator level controller in low power mode

Design Parameters Values

Total Number of Patterns (100%) 8613

Number of Training Patterns ( 60%) 5169

Number of Testing Patterns ( 20%) 1722

Number of Validation Patterns ( 20%) 1722

Number of Each Network Layers 3

Optimum Number of Neurons in 40

Hidden Layer

Target MSE 0

Achieved Performance (MSE)            0.0019953786

Linear Regression 0.97874

Initial Shaping Factor (mu) 0.001

Target Epochs 100
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steady value of 45% and ended at the same value of
45%. It has staircase type response due to successive
steam pressure fluctuations. In Figure 14, steam com-
pensated reactor power is shown in percentage. This
parameter smoothens out the staircase type power
trend into a finely varying reactor power. All trends
show excellent tracking of controller parameters.
Amongst all parameters tracking, the prediction of
steam pressure compensation and reactor demand
power are found with much better performance in
terms of smoothness, robustness, nonlinearity and
overshoots reduction. Hence, an extremely successful
realization has been observed against validation ex-
periments through simulation trials when practically
implemented on CANDU type operating nuclear power
plant in Pakistan.

5.       CONCLUSIONS

In this research work, an effort has been made
to replace the networked reactivity controller of
CANDU-type nuclear power plant by an intelligent
controller operating in distributed cascaded mode. A
thorough investigation has been made to identify the
inputs and outputs of reactivity controller using
moderating control valve as main modulating signal.
The proposed controller has a neural architecture.
The proposed intelligent controller is designed using
distributed programming approach. The proposed
controller has five neural sub-controllers optimized
using standard Back Propagation Algorithm. The pro-
posed controller is designed, tested and evaluated
using ANN tool of MATLAB against a specially
designed transient covering sub-critically, criticality
and power operation of an operating CANU nuclear
power plant.
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