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ABSTRACT

Cellular Manufacturing System (CMS) lies in the heart of lean manufacturing with goal of producing the wide 
variety of products as efficiently as possible. Increase in customer demand for more customized products had forced 
industries to shift to CMS. Once CMS has been established scheduling becomes one of the challenging task. So, in 
present work, a real case study based on scheduling problem in CMS is presented and a hybrid particle swarm opti-
mization (PSO) algorithm is proposed to achieve an optimize sequence. The PSO is integrated with NEH algorithm to 
achieve an optimal sequence faster. A mathematical model is presented to evaluate two conflicting performance mea-
sures; minimization of work in process (WIP) and maximization of average machine cell utilization. Implementation of 
proposed algorithm had increased the utilization from 65% to 82 % while minimized the WIP to 6 parts from 25parts.
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INTRODUCTION

Scheduling is allocation of resources over a time to 
accomplish a pool of tasks. Scheduling denotes towards 
determination of sequences in which jobs should process 
over the production cycle, including indication of jobs 
start and finish times (Conway et al., 2012). Its impor-
tance has been amplified in recent decades, owing to 
the increasing trend in diversity of demand, variety 
and altering markets with global competition as well 
as emerging developments of modern technologies. In 
addition, every plan/ schedule is evaluated under certain 
set of objectives which measures overall performance 
of the schedule. Scheduling in job shop is one of the 
most common and challenging optimization problems. 
Complexity of job shop scheduling in a manufacturing 
cell falls under the umbrella of non-deterministic poly-
nomial-time (NP) hard problem.

In real-world manufacturing scenarios, scheduling is 
carried out to obtain multiple objectives optimization 
simultaneously. In manufacturing cell, intra-cell schedul-
ing is addressed by Gholipour (2011) obtaining sequence 
of jobs. Objective functions included minimization of 
make-span, tardiness, cost of intra-cell movement and 
lastly sequence dependent setup. Savsar (2010), Mahdavi 
(2009), Tsourveloudis (2006), Vidalis (2005), Amar 
(2010), Braglia (2011), Rafiei (2015), Altarazi (2011), 
Pramanik, Karim and Kissani had optimized machine 
utilization, throughput, flow time, make-span and work 

in process inventroy. However, machine utilization and 
work in process inventory are the important performance 
measures, as they are directly related to the production 
cost and their analysis is important because it directly 
relates to profit of the firm and there is rarely found any 
work considering both factors at same interval.

Various novel techniques used to optimize different 
performance measures are discussed in the following 
lines. Gholipour (2011) optimized the various objective 
function with application of meta-heuristic based on 
scatter search. Mahdavi (2009) used genetic algorithm 
to optimize the performance measures. Lian (2006) and 
Tasgetiren (2007) presented a technique of conversion 
to apply PSO algorithm in FSSP and they compared 
the PSO with traditional GA. As concluded by authors, 
PSO algorithm performed better than the traditional GA. 
Pan (2008), Lian (2006), Tasgetiren (2007), Damodaran 
(2012), Tasgetiren (2004), Liao (2007), Zhang (2010), 
Tseng (2008) and Sankaran (2009) had used PSO algo-
rithm for the flow shop scheduling problems. 

In this paper, a novel algorithm based on integartion 
of NEH algorithm and PSO. The integration allows the 
algorithm to optimize the performance measures (WIP 
and machine utilization) more qickly as compared to 
traditional algorithm.
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METHODOLOGY AND MATHEMATICAL 
MODELING

In this section, mathematical modeling, objective 

Ts(i,j) is the setup time of part “i” on machine “j”

STij is the start time of part “i” on machine “j”

Cij is the completion time of part “i” on machine “j”

Wij is the waiting time in queue of part “i” on 
machine “j”

The objective functions and constraints formulated to 
minimize WIP and average utilization of machines are 
given in equations below;

Z1 = 	 			   (1)

This equation was important for the minimization of 
work in process inventory.

Z2 = 				    (2)

It is used for the utilization of machine in cellar 
manufacturing.

Subject to,

					     (3)

First constraint in above equation illustrated that at 
a time one part will be processed by every machine.

			   (4)

Second constraint shows that summation of opera-
tion time and setup time for part “i” on machine “j” is 
always greater equal to or less than throughput time of 
that part and machine.

			   (5)

 Third constraint stipulates that for a part “i” to 
start processing on machine “j”; maximum completion 
time is to be selected between: completion time plus 
traveling time of part “i” from previous machine and 
completion time of previous part “i-1” that is processed 
on machine “j”.

				    (6)

Fig. 1: Methodology overview

function and constraints, is presented. An overview of 
methodology followed in this research is given in Fig. 1. 

I is the index used to represent a part, i=1,2,3, …, n

J is the index used for a machine, j=1,2,3, …, M

ATij is the arrival time of part “i” on machine “j”

Pij is the process time of part “i” on machine “j”
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Fourth constraint ensures that completion time for 
same part on machine “j” is always greater than com-
pletion time at machine “j-1”.

Hybrid Particle Swarm Optimization Algorithm

The proposed hybrid PSO algorithm is a combination 
of two distinct algorithms; NEH and PSO. Motivation 
for integrating both these algorithms is due to need of 
better initial population for the search based algorithm. 
To imply the hybrid algorithm, a case study composing 
of a typical job shop scenario had been studied which 

Table 1: Process Times and Part Route
Parts\ Machine\ Oper-

ation
M1 1 M2 2 M3 3

1 4 M1 2 M2 3 M3
2 5 M2 6 M3 1 M1
3 3 M3 5 M1 4 M2
4 1 M2 3 M1 2 M3
5 5 M1 1 M2 2 M3
6 2 M2 3 M3 9 M1
7 1 M3 3 M1 4 M2
8 7 M2 1 M1 3 M3

Table 2: Machine Time Distance
Mch\Mch M1 M2 M3

M1 0 1 2
M2 1 0 3
M3 2 3 0

consists of “m” machine and “n” parts having distinct 
routings with variable machine distances. Table 1 and 
Table 2 depicts process times and machine distances 
respectively. 

The case problem consisted of eight parts and three 
machines. These parts made a single product with a 
demand of ten, in limited time of three hours. The average 
machine utilization is 65% and work in process inven-
tory is 25 parts. So the aim of study is to find optimize 
sequence of parts such that WIP inventory for the cell 
is reduced and average machine utilization is increased. 

Since it is a combinatorial optimization problem, in 
which various solutions are been encoded with discretized 
variables. Usually, in these problems, the set of solutions 
is converted to discrete one with a goal to determine the 
near to optimum solution. In PSO, constructing direct 
relationship among particles and problem domain for JSS 
problem, n number of dimensions are used for n number 
of jobs (j= 1… n); each dimension depicts a job. Every 
particle has continuous set of position values (PVs’) that 

must be converted into discrete values for permutation 
purpose; hence, phenomenon of smallest position value 
(SPV) was applied. SPV arranges jobs in ascending 
order of their PVs’ and determines its sequence. Solution 
representation framework for particle  is illustrated 
with its velocity and corresponding sequence in Table 
3. It is evident that smallest position value among all 
is = 1.476, which relocates j = 6, giving it first value 
in the sequence and simultaneously other dimensions 
are arranged.

Steps of Simulation Integrated Hybrid PSO – NEH 
incorporated with case study are as following:

Step 1: Initialization

First of all, iteration k=0 and number of particles m= 
double the number of dimension were set. Afterwards, 
values of cognitive and social co-efficient C1, C2 were 
plugged. In search space, m particles were randomly 
generated i.e.  where,  and 
n is last job’s dimension. Also, velocities were initialized 
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for those particles randomly, i.e.,  where, =
. For initializing positions and velocity in search 

space equation (7) and (8) were used simultaneously. 
Whereas Xmin and Xmax are minimum and maximum posi-
tion values, Rn refers to random number between (0, 1). 

Table 4 shows first particle as an outcome of ini-
tialization step for sample problem. Similarly, fifteen 
particles were initiated. SPV rule was applied on particles 
to determine sequence of parts.

		  (7)

			  (8)

Next, sub-optimal sequence by NEH heuristic for the 
jobs was determined with aid of simulation and it was 
floated as a particle in the swarm. For the sixteenth par-
ticle, we introduced sequence by solving the sequential 
problem with NEH algorithm with the steps:

•	 All the processing times for a part i = 1…n on 
all machines were summed up on distinct routes 
including travelling time. These parts were arranged 
in descending order as illustrated in Table 5.

Select top two parts, switch their sequences and find 
make-span for both combinations with aid of simulation. 
Order of parts with minimal make-span was fixed. Next, 
the part with subsequent highest summed process times 

Table 3: Solution Representation
Dimension j PV Velocity Ascending Order of 

PV
Final Sequence

1 5.16 1.073 1.476 6
2 9 -0.288 2.810 5
3 5.449 -0.348 5.16 1
4 8.916 3.184 5.449 3
5 2.810 -3.214 8.916 4
6 1.476 3.918 9 2
7 11.844 0.371 9.156 8
8 9.156 2.016 11.844 7

Table 4: First Particle of Initial Step
Dimension j Ascending Order of 

PV
Sequence

1 5.16 1.073 1.476 6
2 9 -0.288 2.810 5
3 5.449 -0.348 5.16 1
4 8.916 3.184 5.449 3
5 2.810 -3.214 8.916 4
6 1.476 3.918 9 2
7 11.84 0.371 9.156 8
8 9.156 2.016 11.844 7

Table 5: NEH Initial Step
Parts Process +Move 

time(min)
Descending order of 

Parts
1 13 6
2 17 2
3 15 3
4 9 8
5 12 1
6 19 5
7 11 7
8 14 4
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was selected and same procedure was repeated until 
all remaining parts were finished which resulted in a 
sequence (1 8 6 2 3 7 5 4).

All the sequences were evaluated by getting fitness 
values with the help of simulation. Simulation model 
assists to achieve throughput time for machines which 
leads to acquisition of WIP. The model also determines 
component of idle time for machines, hence calculates 
average underutilization of machine cell. The simulation 
of parts for first initialized particle resulted in through-
put time of 95 mins. Illustration of Objective Function 
Evaluation is prescribed in which WIP = TT/ Tc; where 
Tc = (Available Time/ Demand) i.e. 90 minutes/ 10 = 
9. Utilization of machine j = Sum of Processes time 
on j / (Max. of machine j completion times – Min. of 
machine j start times). TT = 95, Tc = 9. Calculated WIP 
= 10.55 ≈ 11.

Utilization of M1, M2 and M3 on calculation came 
out to be 0.378, 0.253 and 0.341 respectively with an 
overall average utilization of 0.330. Hence, average 
under- utilization = 1– 0.324= 0.6758 → 67.58 %. 
Objective function value (Z) was 39.06. This value was 
obtained by combining the normalized values of both 
performance measures; WIP and Utilization. Fitness value 
to be personal best (PB) for each particle in the swarm 
at first iteration was set. Minimum of the PB values was 
set as global best (GB).

Step 2: Update Iteration, inertia weight, velocity 
and position value.

Iteration counter was updated such as k = k+1. For 
position and velocity updates a sample calculation is 
illustrated: From initial population of first particle we 
attained position values and their velocities, table (4).
The corresponding fitness value of the first particle 
for k=0 is = 39.06 and global best fitness value 
from swarm is = 25.639, these values are stored as: 

 as evident from table 
(4). Constants are set as, c1, c2 = 2, r1, r2 = 0.5, inertia 
weight (w) = 1.2 and α = 0.92 and plugged in equation 
(9) for velocity update;  = 1.2*0.92*3.91896 + 2*0.5 
(45.56-5.16) + 2*0.5 (25.639-5.16) = 3.310. Updated 
position values are derived by equation (10):  = 5.16 
+ 3.310 = 8.470. Similar procedure is pursued for all 
dimensions of  and calculated values are evident from 
Table 6. Inertia  was modified step wise by:

		  (9)

				    (10)

Step 3: Sequence by SPV rule

Sequence of jobs was determined and their fitness 
values were evaluated.

Step 4: Update PB and GB values and Iterate 

Table 6: Updating Velocity to get new PV and Sequence
Dimensio J Previous Ve-

locity
Previous Posi-

tion Value
New Velocity New Position 

Value
PV Ascending 

Order
Job Sequence

1 3.918 5.16 3.3101 8.4701 2.757254 3
2 -3.21 9 -4.796 4.2035 4.203567 2
3 1.073 5.449 -2.691 2.7572 5.129664 7
4 -0.34 8.916 1.1221 10.038 5.505446 8
5 3.184 2.810 3.9207 6.7311 6.731136 5
6 -0.28 1.476 8.5260 10.002 8.470132 1
7 2.016 11.84 -6.714 5.1296 10.00205 6
8 0.371 9.156 -3.650 5.5054 10.03812 4
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Cycle

If the function values obtained were minimum than 
the previous ones, their particle positions were updated 
in library of personal and global best positions. For next 
cycle of iteration, repeat the steps from update iteration.

Step 5: Termination

Iterations were stopped when minimum function value 
did not decrease for 10 iteration. Minimum function 
value decreased to 17.021 from 25.8 till 13th iteration and 
then remain constant. Hence, the termination condition 
reached. To be on save side, iterations were run till 35th 
iteration but the minimum function value did not change. 
So, the proposed algorithm had stopped. 

RESULTS AND DISCUSSION

The proposed PSO-NEH algorithm was applied on 
job-shop problem. Convergence of particles toward 
optimum search point is shown in Fig. 2. 

Fig. 2: Convergence of Particles from Initial and 20th

Fig. 3: Comparison normalized function value of Initial 
and 20th iteration

Fig. 4: Trend of Avg. function values against iterations

eight dimensions wandering in search space, their average 
objective function value was plotted against respective 
iterations and a minimization trend is evident. Particles 
are eager to converge and trying to overcome local 
optima as depicted from Fig. 4.

Fig. 5: G-best values from Proposed DPSO-NEH 
Algorithm

It can be seen that for initial population, minimum 
particle value was 25.63 while for 20th iteration it was 
17.021. Comparison of initial and 20th iteration was 
given in Fig. 3.

The optimal sequence of jobs achieved is [3 7 1 5 
4 8 2 5] with a normalized objective function value of 
17.021 which is 82 % machine utilization and 6 part of 
WIP. So the work in process inventory is reduced from 
25 parts to 6 parts while machine utilization is increased 
from 65% to 82%. 

As population size consisted of sixteen particles with 
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It showed the average normalized function value 
against various iteration. It can be seen from the Fig. 
(5) that convergence had occurred rapidly. Minimum 
objective function value of 17.021 had achieved in 12th 
iteration and remained constant for 35 of iterations. So, 
algorithm was terminated as no reasonable change was 
noticed. Fast convergence and better performance of 
the proposed algorithm can also be verified from the 
literature. As in literature, Sha (2006), Lin (2010), Zhao 
(2006) and Dousthaghi (2013) had proved that hybrid 
PSO algorithm perform better for job shop scheduling 
as compared to traditional PSO algorithm. While Mirabi 
(2011), Marichelvam (2014), Sun (2010) and Nouha 
(2015) had confirmed that integration of NEH algorithm 
with other meta-heuristic algorithms resulted in faster 
convergence. Above mentioned literature had verified our 
findings that hybrid PSO algorithm with the integration 
of NEH algorithm performed better as compared to 
traditional PSO algorithm. 
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