
77

J. eng. & appl. sci. Vol. 29 No. 1 January - June 2010 ISSN 1023-862X

INTRODUCTION

Manufacturing industries play an important role
in the national economies, both in terms of GDP/GNP
contribution and level of employment. To enhance
productivity and maximize the benefits from a manu-
facturing system, optimized utilization of resources
becomes very essential. Therefore, scheduling is of
paramount importance to ensure proper utilization of
resources.

Scheduling has wide area of application in sched-
uling production, trains and flights.

In the class of combinatorial optimization prob-
lems, the handling of Job-Shop Scheduling Problem
(JSSP) is generally considered to be the hardest of all.
Considering the fact that JSSP belongs to the group
of NP-complete problems, a considerable margin for
further improvement, in current solution approaches,
is still available. Due to the size of its solution space
handling of JSSP is considered to be extremely diffi-
cult. In case of m number of machines and n number
of jobs, (n!)m are (theoretically) considered to be the
total number of possible solutions. Generally, because
of the higher degree of difficulty in finding optimum
solution, it becomes extremely hard for the conven-
tional search techniques to reach the optimum value
in polynomial time. Therefore, such problems can be

handled efficiently by the techniques based on heu-
ristic optimization.

A variety of methods based on heuristics can
be found in literature to tackle the JSSP1. Most re-
nowned ones are Tabu Search (TS)2 - 4, Simulated
Annealing (SA)5,6, and Genetic Algorithms (GA)7 - 12.
Also, in13 a detailed survey regarding solution tech-
niques for JSSP is presented. An optimization based
approach of hybrid nature was presented in14, a Greedy
Randomized Adaptive Search Procedure (GRASP) for
JSSP was presented in15. Also, a parallel GRASP for
handling JSSP was presented in16. None of the above
has been able to solve the JSSP optimally and struggle
in different directions is still underway to solve the
JSSP.

Genetic Algorithms (GA) is known for solution
of combinatorial nature of problems like JSSP but its
performance has not been satisfactory for solution of
the JSSP. The flexibility level of standard GA, in case
of practical applications, is low due its evolutionary
nature. This effect of lower flexibility is magnified
when problems of complicated nature that posses
conflicts and multi-tasking are dealt with. Therefore,
a number of local search based algorithms6,4,1,3 are
available in literature. According to17 though GAs are
better equipped to reach the optimum solution rapidly
but in the process there is every chance of premature

1 Sarhad University of Science & IT, Peshawar, Pakistan.
2 NWFP University of Engineering and Technology, Peshawar, Pakistan.
3 National University of Science and Technology, Rawalpindi, Pakistan.

AN EVOLUTIONARY ALGORITHM FOR JOB-SHOP SCHEDULING

Adnan Tariq,1 Iftikhar Hussain,2 Abdul Ghafoor,3 Sahar Noor2

ABSTRACT

It has been a general perception that the hardness level of job-shop scheduling problems is comparatively
high and that is why effective, efficient and accurate procedures for scheduling are required to substantiate
its usefulness. Therefore, in this paper a hybrid approach, primarily based on Genetic Algorithm (GA), is
presented to handle the problem of scheduling job-shop that consists of m number of machines and n number
of jobs. This approach is actually a combination of a Local Search Heuristic (LSH) with standard GA and
optimizes the value of makespan. Computational experience, that includes some case studies and a number of
problems from literature, shows that the LSH has the tendency to minimize the makespan value and help the
algorithm to find out the optimum solution for the problem in fewer generations.

Keywords: Genetic Algorithm, Scheduling, Job-shop, Local Search Heuristic.

78

J. eng. & appl. sci. Vol. 29 No. 1 January - June 2010 ISSN 1023-862X

convergence and genetic drift. The problem can be
somewhat solved by developing hybrid approaches
that do not simply depend upon the evolutionary
abilities of GA but also benefit from local search
heuristics. According to18 a local search procedure
follows a pre-specified set of rules and following those
it explores the immediate neighborhood carefully. They
also argued that local search combined with GA de-
velops such kind of a hybrid tool that normally has
the ability to carryout optimization more efficiently
and relieves pressure off the GA parameters. In other
words, GA depends far less on its parameters be-
cause of having an effective local search heuristic.

A hybrid GA based algorithm is presented in
this paper to handle the JSSP which in fact is the
combination of standard GA and a procedure for local
improvement (LSH). To check the effectiveness of
each solution makespan is used as the criteria of
measuring performance. The reason, of using
makespan as the criteria, is that it has very frequently
been used in literature and thus facilitates the com-
parison of results with those already available in lit-
erature. For the purpose of validation of the hybrid
tool developed during this research we considered
some industrial case studies along with a number of
benchmark problems from literature. It has been ob-
served while solving these benchmark problems that
the hybrid approach proposed in this paper has the
ability to reach the optimum or near optimum solution
in the earlier generations. Since in case of more than
90% of the problems the algorithm has been able to
reach the optimum makespan value, therefore it proves
that the hybrid technique developed during this re-
search is effective and accurate.

THE STANDARD JOB-SHOP SCHEDULING
PROBLEM

The standard job-shop scheduling problem con-
sists of the scheduling of n number of different jobs
on m number of different machines with the objective
of minimizing makespan while satisfying the following
constraints:

1. Each job visits each machine only once.

2. The operation sequence of different jobs is in-
dependent of each other.

3. No interruptions are allowed in between.

4. The capacity of each machine is such that it can
accommodate only one job at a time.

5. No specifications for due dates and release times
are given.

The different notations/ abbreviations used:

Best [i,j] Best solution found in a generation

Chrom [i,j] A two dimensional chromosome/so-
lution

Cmax Makespan

Count A counter to count the number of
times LSH is being executed

CTo Completion Time for operation ‘o’

ESTo Earliest Start Time for operation ‘o’

Gen Generation

i, a Counter for rows of a solution/chro-
mosome

j, b Counter for columns of a solution/
Chromosome

JATx Availability time job ‘x’

Jobs Total number of jobs

Machs Total number of machines

MATk Availability time of machine ‘k’

Max Gen. Maximum number of generations

PTo Processing Time for operation ‘o’

METHODOLOGY

This has been a general observation of the re-
searchers in general and those in the area of manufac-
turing systems in particular that the performance, both
in terms of accuracy and time, of hybrid algorithms is
better than standard GAs. Keeping this aspect of
computation in view a hybrid approach is presented
in this paper, which is the combination of standard
GA and the LSH, proposed during this research. In
every generation of GA the solution having the mini-
mum makespan value is further refined (minimized) by
applying the LSH to it. This process is repeated for
a maximum number of generations the value of which
is determined by a sensitivity analysis.

The methodology is developed in software
known as AM (Applications Manager)19. AM uses a
highly visual interactive interface that enables the
developer to produce applications easily and quickly.

79

J. eng. & appl. sci. Vol. 29 No. 1 January - June 2010 ISSN 1023-862X

AM supports modular development of larger applica-
tions. Each module is saved as a separate file and can
be linked dynamically with one another.

GENETIC ALGORITHM (GA)

GA is stochastic in nature as it starts with a
randomly generated set of solutions and also repli-
cates the principles of natural genetics and natural
selection. The GA applied during this research uses
a population size of 75, maximum number of genera-
tions = 100 and rate of crossover and mutation is 60%
and 10% respectively. All these values, of different
GA parameters, are determined by carrying out a sen-
sitivity analysis.

Representation

While applying GA to a problem the first thing
that needs to be taken care off is devising a represen-
tation scheme. The scheme used during this research
is integer based. The size of each chromosome,
representing a solution to a problem, would be

equal to the product of total number of machines
and total number of parts in the problem. Each integer
in a solution would represent a particular operation of
a particular job and that is why each integer is re-
flected operation times in each solution i.e. if a prob-
lem consists of 6 jobs and 6 machines then each
integer (from 1 to 6) would exist 6 times in each
solution. Table 1 represents a solution for a 6 × 6
problem.

Table 1: Chromosome representation

3 3 1 5 4 3

4 2 1 2 5 5

1 4 6 6 6 4

2 6 5 2 5 1

6 2 4 1 2 5

4 3 3 1 6 3

Figure 1: Hybrid methodology for JSSP

80

J. eng. & appl. sci. Vol. 29 No. 1 January - June 2010 ISSN 1023-862X

At each position an integer having a value less
than or equal to 6 is inducted and each integer from
1 to 6 would not exist more than 6 times in each
solution as no job can have more than 6 operations.
It means there are six 1’s, six 2’s and so on. While
moving in the direction of arrow, as shown alongside
Table 1, the first integer is ‘3’. This represents the
first operation of job 3. After scheduling the first
operation of job 3 on its respective machine, we move
to the next integer in the same column that is 4. Since
this is the first time integer 4 has been read by the
algorithm therefore it represents Job 4’s first opera-
tion and would be scheduled after Job 3’s first opera-
tion. Following the same procedure all the other op-
erations would be scheduled one after the other and
finally the makespan value is calculated.

Fitness function

The objective of the problem is the minimization
of makespan (Cmax).Therefore the fitness function used
here is the reciprocal of the objective function:

Fitness Function = F = 1/Cmax

Genetic Operators

Genetic operators are the essential components
of GA and help us to produce new solutions from the
existing population and are therefore mainly respon-
sible for the evolutionary nature of GA. This process
of evolution continues until no further improvement
can be observed. The different genetic operators used
during this research are elaborated in the following
sections.

Crossover

Crossover is one of the principal genetic opera-
tors of GA. It produces two new chromosomes by
combining portions of two existing chromosomes. The
procedure for crossover, adopted here, is elaborated
by an example as follows:

To carryout the crossover procedure, the first
step is to select two parent chromosomes. Here, in
this research elitist strategy is adopted for selecting
parents. Once the parents are selected (Table 2 and
Table 3) then that portions of the two selected chro-
mosomes are identified (randomly) which are to be
crossed over, as shown in Table 2 and Table 3
(columns 3 and 4). After this the selected portions of
the two chromosomes are interchanged hence pro-
ducing two new chromosomes (Table 4 and Table 5)
which are termed as children. Such a crossover pro-
cedure has a side effect of having a tendency of
sometimes producing illegal (where some integers may
reflect less than or more than the specified limit i.e.
operation times) solutions.

Table2: Chromosome A

3 3 1 5 4 3

4 2 1 2 5 5

1 4 6 6 6 4

2 2 5 1 5 1

6 6 4 2 2 5

4 3 3 1 6 3

Table 5: Child B

4 5 1 5 2 2

6 1 1 2 6 6

6 4 6 6 2 5

5 4 5 1 3 1

5 5 4 2 1 1

4 3 3 1 1 6

Table 3: Chromosome B

4 5 5 1 2 2

6 1 4 4 6 6

6 4 2 6 2 5

5 4 3 3 3 1

5 5 2 2 1 1

4 3 3 3 1 6

Table 4: Child A

3 3 5 1 4 3

4 2 4 4 5 5

1 4 2 6 6 4

2 2 3 3 5 1

6 6 2 2 2 5

4 3 3 3 6 3

81

J. eng. & appl. sci. Vol. 29 No. 1 January - June 2010 ISSN 1023-862X

Repair Algorithm

Since the crossover procedure applied during
this research has the tendency to sometimes produce
illegal solutions therefore an algorithm to carryout
repair of such solutions is proposed here after cross-
over each solution is checked whether legal or not.
After confirming illegality, the repair procedure ap-
plied is as follows:

1. After confirming illegality the procedure for re-
pair is applied by first collecting information
about the integers that are reflected either less
than or greater than the specified limit (opera-
tion times). By collecting information about such
integers we mean storing information about their
positions (where they are placed) and their ex-
cess or shortage. In this case only those posi-
tions would be considered which are outside
the crossed over portion.

2. Once the information to be collected in step 1 is
available then one by one those integers that
were less than the specified limit, are selected
and inducted in place of an integer which is in
excess. Important thing to note here is that in-
tegers in shortage are selected one by one (se-
quentially) but for placement positions are se-
lected randomly.

3. Step 2 is kept on repeated till the time all the
integers that were less than the specified limit
are inducted into the solution.

For further clarification of the above procedure
an example is presented below by applying the repair
procedure to the solution presented in Table 4.

Step 1: The first thing that the repair strategy has
to do is to verify the illegality of a solution.
This can be done by collecting information
about the frequency of existence of each
integer in the solution and then comparing
that with the specified limit, as shown in
Table 6:

Step 2: Since there are some integers in excess and
some in shortage, therefore it proves the
illegality of the solution and thus requires
repair.

Step 3: At this stage we know which integers are in
shortage and which are in excess. So, at this
stage information about the placement, of
those integers which reflect more than the
specified times, is collected and stored. As
mentioned earlier only those positions would
be considered which lie outside the crossed
over portion. Table 7 presents this informa-
tion.

Step 4: Now the integers in shortage are picked
one by one and placed in a location that is
randomly selected from the locations men-
tioned in Table 7, as shown in Table 8.

Table 6: Frequency of existence of each
integer in the solution

Integer Frequency Legal/ Shortage/
of existence excess/ excess

short limit

1 3 Short 3

2 7 Excess 1

3 9 Excess 3

4 7 Excess 1

5 5 Short 1

6 5 Short 1

Table 7: Locations of those integers
which are in excess

Integer that Locations
is in excess Row Column

2 2

2 4 1

4 2

5 5

1 1

3 1 2

1 6

6 2

6 6

1 5

4 2 1

3 2

3 6

6 1

82

J. eng. & appl. sci. Vol. 29 No. 1 January - June 2010 ISSN 1023-862X

Step 5: It has been clearly represented in Table 8
that every single illegality has been removed
by placing back those integers in the solu-
tion which were in shortage. The repaired
version of child A (Table 4) is presented in
Table 9.

Decoding procedure:

The decoding procedure used here, is elabo-
rated in the form of a flow chart as shown in
Figure 2.

Selection

A number of methods have been used in litera-
ture for selecting chromosomes from one generation
into another. All these method are based on the evo-
lution theory of Darwin. Stochastic Universal Sam-
pling (SUS)20 is one of these methods and is used for

Table 9: Repaired solution

3 1 5 1 4 3

4 2 4 4 5 5

1 6 2 6 6 4

2 1 3 3 5 1

6 6 2 2 2 5

4 5 3 3 6 1

Mutation

It is another principal genetic operator of GA.
The role of mutation in GA is to keep the diversity
level in a population at a certain level maintain a
certain level that prevents the algorithm to get trapped
at local optimum. It does that through changing the
genetic structure of a solution by incorporating a
random change in the value of one or more genes of
the solution. The procedure adopted for mutation
during this research is of swap mutation type, where
in each column of the solution two genes are ran-
domly picked and their values are swapped, as shown
in Tables 10 and 11. The usefulness of adopting this
mutation approach is that it does not produce illegal
solutions.

Table 11: Mutated chromosome

3 3 1 2 6 3

4 5 1 2 5 5

5 4 3 6 4 1

1 4 3 3 3 4

5 2 2 5 1 1

4 3 6 1 6 3

Table 10: Chromosome selected for mutation

3 3 1 5 4 3

4 2 1 2 5 5

1 4 6 6 6 4

5 4 3 3 3 1

5 5 2 2 1 1

4 3 3 1 6 3

Table 8: Repair work

Locations selected
Integer in Frequency of Integer in Frequency of randomly Assigned values
shortage shortage excess excess Row Column to selected

locations

2 1 4 2 1

1 3 1 2 1

3 3 6 6 1

5 1 6 2 5

6 1 4 1 3 2 6

83

J. eng. & appl. sci. Vol. 29 No. 1 January - June 2010 ISSN 1023-862X

selecting a complete new generation out of the cur-
rent generation. The main advantage of SUS is its
minimum spread and zero bias.

LOCAL SEARCH HEURISTIC (LSH)

The LSH developed during this research, is
placed inside the standard GA loop. In each genera-
tion, the solution with the minimum makespan value
(best of the lot) is further improved by subjecting it
to the LSH. The process of local improvement is
started with the first two genes in the first row of the
solution provided by GA, as the best of the popula-
tion. These two genes are swapped and after that the
solution is decoded and the corresponding makespan
value is determined. If this makespan value is smaller
than the original makespan value of the solution then
the change is stored otherwise genes are reverted
back to their original positions. Now the same proce-
dure is repeated with the first and third gene of the
same solution in the same row. This process is kept
repeated until processing for the first gene against all
the other genes in the solution is completed. On

completion, the next gene is considered and the same
process is repeated. This repetition is kept continued
until at least half of the genes are tested against all
the other genes. The reason to keep it down to half
of the total number of genes is that by the time first
50% of the operations are scheduled a trend has
developed and the last 50% follow the same trend and
therefore do not affect the makespan value.

Though LSH is very effective but it is helped a
great deal by the evolution of GA. It is GA that is
responsible to search out a comparatively better so-
lution, which after being subjected to local improve-
ment is converted into an even better one. The pos-
sibility getting trapped in local optimum is remote. It
is to be noted that this locally improved procedure, in
each generation, does not replace any solution in the
main population and therefore plays no role in the
evolution of GA. In other words the local improve-
ment procedure and the evolution of GA are kept
separate so that the natural evolution of GA is not
affected by local improvement. This prevents GA from

Figure 2: Decoding Procedure

84

J. eng. & appl. sci. Vol. 29 No. 1 January - June 2010 ISSN 1023-862X

getting trapped in local minimum. Further explanation
of the LSH is given in the form of a detailed block
diagram as shown in Figure 3.

To further clarify the working of LSH with the
help of numerical example, a 4×4 problem is generated
randomly as shown in Table 12.

It is required to schedule the system while mini-
mizing the makespan (Cmax). For this purpose the prob-
lem is run on a computer program developed as per
the methodology described in Figure 1. The solution
that represents the minimum makespan value in first
generation of GA is presented in Table 13.

Table 12: A randomly generated 4×4 problem

Operations
1 2 3 4

Jobs Machine Time Machine Time Machine Time Machine Time

1 3 5 2 7 4 6 1 4

2 2 6 1 8 3 7 4 5

3 4 9 3 3 1 4 2 2

4 1 5 4 8 2 6 3 3

Figure 3: Local Search Heuristic (LSH)

85

J. eng. & appl. sci. Vol. 29 No. 1 January - June 2010 ISSN 1023-862X

The chromosome shown in Table 13 is having
makespan = Cmax = 33. Its decoded form is shown in
Figure 4.

This solution is now subjected to LSH. On
completion, the final result found by the LSH is pre-
sented in Table 14.

Figure 5 shows the decoded from of the solu-
tion, presented in Table 14, on Gantt chart.

SENSITIVITY ANALYSIS:

The sensitivity analysis of the hybrid GA based
approach for JSSP is carried out in this section. A
problem of the size 10×1021 is solved while varying
the values of different GA parameters and recording
corresponding variation in %age solution gap. This
variation in values of different GA parameters in fact
helps us in fine tuning the combination in which these
parameters would finally be used. Once this process
of fine tuning is completed the resulting values of the
parameters are selected and then used for solving the

rest of the problems. Figures 6, 7, 8 and 9 presents the
sensitivity analysis to fine tune the working of the
algorithm, developed during this research.

Figure 6 shows the effect of variation in the
number of generations on %age Solution Gap. It
clearly shows that the minimum value of %age solu-
tion gap for the problem is achieved at a generation
number 100. On the other hand, Figure 7 shows that
suitable population size for the algorithm, after allow-
ing it to complete 100 generations with a 60% cross-
over rate and 10% mutation rate, is 75.

The justification of using 10% mutation rate,
60% crossover rate, size of population = 75 and the
total number of generations = 100, is given in Figures
8 and 9.

Keeping the above analysis in view it is safe to
say that the algorithm would perform satisfactorily,
with population size = 75, total number of generations
= 100, mutation rate = 10%, crossover rate = 60%, in
case of all the other tested problems.

Table 13: Solution having the minimum makespan
value in 1st generation of GA

2 2 2 4

4 3 4 3

3 4 1 2

1 1 1 3

Figure 4: Schedule developed for the best chromosome found in 1st generation of GA

Table 14: Locally improved solution

2 1 3 1

3 1 3 2

4 4 1 4

4 2 3 2

86

J. eng. & appl. sci. Vol. 29 No. 1 January - June 2010 ISSN 1023-862X

NUMERICAL EXAMPLE

To further elaborate the accuracy and effective-
ness of the technique proposed in this paper a nu-
merical example (bench mark problem) is selected from
literature21. The processing requirement and corre-
sponding processing times for each operation are
shown in Table 15.

The main objective here is to minimize the
makespan value. Though a number of other perfor-
mance measures can also be used but makespan is
considered to be the simplest and more frequently
used measure

The data given in Table 15 is given a run on
a computer code developed in AM19 according to
the already described hybrid approach, in Figure 1.
The optimum value of makespan for the problem

was found during the first generation. The best
chromosome obtained is shown in Table 16,
whereas the decoded schedule is shown in
Figure 10.

COMPUTATIONAL RESULTS

A reasonable computational experience (Table
18) shows that the approach developed during this
research has been able to determine the optimum value
of makespan in more than 90% of the problems tried
so far. This shows that the technique developed here
has the tendency to produce accurate results and can
be implemented in practical situations. The CPU Time
presented in the table is for the number of genera-
tions in which the minimum value of makespan is
obtained while using Intel® T2130 machine with 1.86
GHz processor and 1.0 GB RAM.

Figure 5: Schedule developed for the solution improved by LSH

Table 15: A 6 × 6 bench mark problem

Operations
1 2 3 4 5 6

Jobs Machine Time Machine Time Machine Time Machine Time Machine Time Machine Time

J1 3 1 1 3 2 6 4 7 6 3 5 6

J2 2 8 3 5 5 10 6 10 1 10 4 4

J3 3 5 4 4 6 8 1 9 2 1 5 7

J4 2 5 1 5 3 5 4 3 5 8 6 9

J5 3 9 2 3 5 5 6 4 1 3 4 1

J6 2 3 4 3 6 9 1 10 5 4 3 1

87

J. eng. & appl. sci. Vol. 29 No. 1 January - June 2010 ISSN 1023-862X

Figure 6: Effect of the number of generations on %age solution gap

Figure 7: Effect of population size on %age solution gap
Number of generations = 100, Mutation rate = 10% Crossover rate = 60%

Figure 8: Effect of crossover rate on %age solution gap
Size of Population = 75, Number of generations = 100, Mutation rate = 10%

Figure 9: Effect of mutation rate on %age solution gap
Size of Population = 75, Number of generations = 100, Crossover rate = 60%

88

J. eng. & appl. sci. Vol. 29 No. 1 January - June 2010 ISSN 1023-862X

Figure 11 and Figure 12 shows the total genera-
tions and corresponding CPU time consumed by the
algorithm to reach the optimum or near optimum so-
lution, respectively.

Figure 11 is good representation of the fact that
this algorithm, having an effective LSH at the heart of
the GA loop, has the ability to reach the optimum or
near optimum solution in earlier generations.

The hardness of a problem depends on the num-
ber of machines, number of operations and parts/ma-
chines ratio. Also, square problems are comparatively
harder even if the number of operations is same. As
the number of machines and operations are compara-
tively maximum in the case of 10x10 problem and at the
same time it is a square problem too, therefore the
algorithm has taken longer time to find its optimum.

The ability of the algorithm to reach the
optimum value in more than 90% of the problems

Table 16: Best Chromosome
Makespan = 55 time units

1 6 2 1 3 3

2 1 5 4 6 3

4 5 3 6 2 1

3 3 4 2 6 2

2 5 4 5 5 5

Figure 10: Schedule developed after decoding the best chrom.

Figure 11: Number of generations to reach the optimum/near optimum result

89

J. eng. & appl. sci. Vol. 29 No. 1 January - June 2010 ISSN 1023-862X

Table 17: Computational Results

S/ Problem Size Source Optimal Makespan %age solution Num CPU
No. Jobs x Makespan found gap = (M-OM)* of time

Macks (OM) (M) 100/0m Gens (Sec)

1 FT 6 6 × 6 Fisher and 55 55 0 1 1
Thompson, 1963.

2 LA 1 10 × 5 S. Lawrence, 1984. 666 666 0 1 4

3 LA 2 10 × 5 S. Lawrence, 1984. 655 655 0 36 328

4 LA 3 10 × 5 S. Lawrence, 1984. 597 597 0 38 431

5 LA 4 10 × 5 S. Lawrence, 1984. 590 590 0 1 13

6 LA 5 10 × 5 S. Lawrence, 1984. 593 593 0 1 1

7 LA 6 15 × 5 S. Lawrence, 1984. 926 926 0 1 4

8 LA 7 15 × 5 S. Lawrence, 1984. 890 890 0 1 12

9 LA8 15 × 5 S. Lawrence, 1984. 863 863 0 3 15

10 LA9 15 × 5 S. Lawrence, 1984. 951 951 0 1 5

11 LA10 15 × 5 S. Lawrence, 1984. 958 958 0 7 65

12 LA11 20 × 5 S. Lawrence, 1984. 1222 1222 0 6 72

13 LA12 20 × 5 S. Lawrence, 1984. 1039 1039 0 3 35

14 LA 13 20 × 5 S. Lawrence, 1984. 1222 1222 0 1 59

15 LA14 20 × 5 S. Lawrence, 1984. 1292 1292 0 4 40

16 LA15 20 × 5 S. Lawrence, 1984. 1207 1207 0 12 75

17 LA16 10 × 10 S. Lawrence, 1984. 945 945 0 37 476

18 LA17 10 × 10 S. Lawrence, 1984. 784 784 0 43 734

19 LA18 10 × 10 S. Lawrence, 1984. 848 848 0 58 965

20 LA19 10 × 10 S. Lawrence, 1984. 842 842 0 63 1234

21 LA20 10 × 10 S. Lawrence, 1984. 902 902 0 78 3245

22 FT 10 10 × 10 Fisher and 930 936 0.645 90 6653
Thompson, 1963.

23 Case 8×6 S. Noor and 505 505 0 2 8
Study-1 M. K. Khan, 2007.

24 Case 6×6 S. Noor and 444 444 0 1 3
Study-2 M. K. Khan, 2007.

25 Case 6×6 S. Noor and 379 379 0 4 18
Study-3 M. K. Khan, 2007.

90

J. eng. & appl. sci. Vol. 29 No. 1 January - June 2010 ISSN 1023-862X

is due to the fact that the algorithm has an effective
LSH inside the GA loop. Because of its placement
inside the GA loop in each generation the best
solution of the algorithm is subjected to local
improvement and afterwards the resulting make-
span value is compared with the overall makespan
value and if found lesser than that then the overall
minimum solution found, so far, is replaced by
the locally improved solution. Another aspect of
the algorithm that keeps intact the evolutionary abil-
ity of GA, besides being hybrid in nature, is that it
does not place the improved solution back into popu-
lation thus avoiding any randomness creeping into
the search.

CONCLUSION AND FUTURE WORK

This research has come up with an approach
that is the combination of an LSH with standard GA
by using integer based representation scheme, swap
mutation, multipoint crossover and stochastic univer-
sal sampling (sus) for selection. The organization of
the algorithm is such that in each generation the
solution with the minimum makespan value (best of
the lot) is further improved by subjecting it to the
LSH and after that the minimized makespan value is
compared with the overall minimum value found so
far. If this new makespan value is smaller than the
overall value then this locally improved solution re-
places the overall minimum solution found so far and
for future generations now this would act as the
benchmark. Computational experience with the algo-
rithm shows that LSH has the ability to lead the al-
gorithm to the optimum or near optimum solution in
earlier generations. Further since in more than 90% of
the problems the optimum results have been achieved,
this proves the accuracy of the approach.

REFERENCES

1. Vaessens, R. J. M., Aarts, E. H. L., Lenstra, J. K.,
1996. “Job-shop scheduling by local search”.
INFORMS Journal on computing 8, 302-317.

2. Taillard, E. D., 1994. “Parallel Tabu search
techniques for the job-shop scheduling prob-
lem”. ORSA Journal on Computing, 6(2),
108-117.

3. Nowicki, E., Smutnicki, C., 1996. “A fast tabu
search algorithm for the job-shop problem”.
Management Science, 42(6), 797-813.

4. Lourenco, H. R., Zwijnenburg, M., 1996. “Com-
bining the large-step optimization with tabu-
search: Application to the job-shop scheduling
problem”. In: Osman, I. H., Kelly, J. P. (Eds),
Metaheuristics: Theory and applications.
Kluwer Academic Publishers, 219-236.

5. Laarhoven, P. J. M. V., Aarts, E. H. L., Lenstra,
J. K., 1992. “Job-shop scheduling by simulated
annealing”. Operations Research, 40, 113-125.

6. Lourenco, H. R., 1995. “Local optimization and
job-shop scheduling problem”. European Jour-
nal of Operations Research, 83, 347-364.

7. Davis, L., 1985. “Job-shop scheduling with
genetic algorithm”. In: Proceedings of the First
International Conference on Genetic Algorithms
and their Applications. Morgan Kaufmann,
136-140.

8. Storer, R. H., Wu, S. D., Wu, S. D., Park, I.,
1992. “Genetic algorithms in problem space
space for sequencing problems”. In: Proceed-

Figure 12: CPU time (sec) taken by each problem to reach the optimum/ near optimum result

91

J. eng. & appl. sci. Vol. 29 No. 1 January - June 2010 ISSN 1023-862X

ings of a Joint US-German Conference on Op-
erations Research in Production Planning and
Control, 584-597.

9. Aarts, E. H. L., Van Laarhoven, P. J. M., Lenstra,
J. K., Ulder, N. L. J., 1994. “A computational
study of local search algorithms for job-shop
scheduling”. ORSA Journal on Computing, 6,
118-125.

10. Dorndorf, U., Pesch, E., 1995. “Evolution
based learning in job-shop environment”.
Computers and Operations Research, 22,
25-40.

11. Croce, F., Tadei, R., Volta, G., 1995. “A
genetic algorithm for job-shop problem”.
Computers and Operations Research, 22 (1),
15-24.

12. Noor, S., 2007. “Operational scheduling of tra-
ditional and flexible manufacturing systems
using genetic algorithms, artificial neural net-
works and simulation. PhD Thesis, University
of Bradford, UK.

13. Jain A. S. and Meeran S., 1999 “Deterministic
job-shop scheduling: Past, Present and Future”,
European Journal of Operational research 113,
390-434.

14. Wang, L. Zheng, D., 2001. “An effective hybrid
optimization strategy for job-shop scheduling
problems”. 8, 585-596.

15. Binato, S., Hery, W. J., Loewenstern, D. M.,
Resende, M. G. C., 2002. “A GRASP for job-
shop scheduling”. In: Ribeiro, C. C., Hansen,
P. (Eds.), Essays and Surveys in Metaheuristics.
Kluwer Academic Publishers.

16. Aeix, R. M., Binato, S., Resende, M. G. C., 2003.
“Parallel GRASP with path-relinking for job-
shop scheduling”. Parallel Computing, 29,
393-430.

17. Uckun, S., Bagchi, S., Kawamura, K., Miyabi,
Y., 1993. “Managing Genetic Search in Job-
Shop Scheduling”. IEEE Experts, 15-24.

18. Tsai, C. F., Lin, F.C., 2003. “A new hybrid
heuristic technique for solving job-shop sched-
uling problem”. IEEE International Workshop
on Intelligent Data Acquisition and Advanced
Computing Systems: Technology and Applica-
tions, 8-10 September 2003, Lviv, Ukraine.

19. Applications Manager (AM), 2001. Intelligent
Environment, Middlesex, UK.

20. Chaperfield A., Flemming P., Pohlhein H.,
Fonseca C., 2001. “Genetic Algorithm MATLAB
Tool Box – User’s Guide” Version 1.2, Depart-
ment of Automatic Control and Systems Engi-
neering, University of Sheffield.

21. Muth, J. F., and Thompson, G.L., 1963. “Indus-
trial scheduling”. Prentice Hall, Eaglewood
Cliffs, New Jersey, 1963.

