
December 2020 | Volume 39 | Issue 2 | Page 143

Journal of Engineering and Applied Sciences

Research Article

Introduction

In addition to the traditional approaches, the design
of novel systems and techniques at meso, micro,

and even nanoscale has sparked new methods in
order to explore and analyze the molecular origins
of critical diseases. Miniaturize electronics devices
atop these endeavors has triggered the measuring

of molecular interactions using resilient approaches
that can precisely transduce biotic interactions at a
rudimentary scale. Such profound attempts promise
to leverage instruments appropriate for diagnosing
diseases at an early stage, scan prognosis in a finer detail,
and follow and predict the drift of disease evolution
in counter to the state of the art medicine and novel
remedies. However, these approaches suffer by one-

Abstract: Important biological molecules including DNA/proteins and diseased human cells can be detected
by a variety of micro and nanoscale devices and systems. Unfortunately, these biomedical applications suffer
from huge amount of data. That is, the data generated by such systems is so large that a typical computer
workstation cannot handle it in real-time. Traditional approaches rely on unloading raw data to off line storage
and suffer from the trade-off of an insufficiently rigorous sampling rate. Furthermore, the phases leading to
useful decision-making often follows pre- and post-processing in a subjective manner, which is tedious, time-
consuming and erroneous. An important and an unrealized need of these systems is the real-time answer from
the acquired data, which is often multi-dimensional and at remarkably high-resolution. The inherit noise in
the data is another major bottleneck for real-time processing. This entails expediting the decision-making
process as well as to instill intelligence in the approach to reduce subjectivity to a greater extent. To harness
the high computational power offered by commodity graphics processing units (GPU) and accomplish the
decision-making in real-time has gained traction in a gamut of recent biomedical applications. This review
article investigates the use of state-of-the-art GPUs to benefit the biomedical community through real-time
decision-making from huge amount of biomedical data mainly due to its massively parallel architecture. The
recent advances in GPUs such as Fermi- and Kepler-based setup seem to be promising for an increasing
complexity in the algorithms and the demands of growing data in biomedical applications both in dimension
as well as in throughput. Understanding these approaches can help the biomedical community to shift batch-
mode processing from cluster-based machines to real-time processing on low-end machines or smartphones in
order to help the decision-makers and stack holders for early disease detection.

Abdul Hafeez1*, Akhtar Nawaz Khan2 and Zahid Ullah3

1Department of Computer Science and IT, Jalozai Campus, UET Peshawar, Khyber Pakhtunkhwa, Pakistan; 2Department
of Electrical Engineering, Jalozai Campus, UET Peshawar, Khyber Pakhtunkhwa, Pakistan; 3Pak-Austria Fachhochschule:
Institute of Applied Sciences and Technology, Haripur, Pakistan.

Received: July 13, 2020; Accepted: October 13, 2020; Published: December 19, 2020	
*Correspondence: Abdul Hafeez, Department of Computer Science and IT, Jalozai Campus, UET Peshawar, Khyber Pakhtunkhwa, Pakistan;
Email: abdul.hafeez@uetpeshawar.edu.pk
Citation: Hafeez, A., A.N. Khan and Z. Ullah. 2020. Impact of graphics processing units on diagnosis using bio-imaging. Journal of Engineering
and Applied Sciences, 39(2): 143-153.
DOI: http://dx.doi.org/10.17582/journal.jeas/39.2.143.153
Keywords: GPU, Real-time data mining, Medical imaging, Neuronal recording, Solid-state pores

Impact of Graphics Processing Units on Diagnosis using Bio-Imaging

http://dx.doi.org/10.17582/journal.jeas/39.2.143.153
crossmark.crossref.org/dialog/?doi=10.17582/journal.jeas/39.2.143.153&domain=pdf&date_stamp=2008-08-14

December 2020 | Volume 39 | Issue 2 | Page 144

Journal of Engineering and Applied Sciences
way or the other from large data sets. Conventional
approaches including mass spectrometry (MS), multi-
electrode arrays (MEA), and magnetic-resonance
imaging (MRI) generate multi-dimensional and
high-throughput data. The quantity of the measured
data per unit time has progressed on the order
of magnitude i.e., exponentially in resolution as
well as in dimensionality, partly because of high-
spatial resolution as well as finer discretization of
the measured signals/images. Therefore, it has set
off almost impossible to correctly distill interesting
patterns in the arising real-time streaming data using
traditional approaches.

The emerging accelerators and heterogeneous-based
computing especially graphics processing units
(GPUs) have shown huge potential in accelerating
biomedical applications. Epidermal Electronics
System (EES) is one such direction, a breakthrough
research for measuring EEG, ECG, and EMG. The
performance for measuring these activities is up to
the par so far. With the passage of time such system
will expand them to measure other essential human
activities. This will lead to an increase in the fabrication
per unit through advanced micro and nanofabrication
approaches resulting in generating large amount
of data. Such data deluge will incur delays in the
detection of diseases and will not produce results at
the right time and hence the processing will never
happen in real-time. The delayed diagnosis of the
patients can further lead to the death in diseases that
require an immediate attention such as cancer.

In fact, handling a significant amount of data is non-
trivial and entails significant computing resources.
More specifically, the huge data streams created by
MS, MEA, Nanopore measurements, usually using
a sensor network entails innovative solutions to
efficiently analyze and compute the target results. An
advantageous remedy in the discussed design space
may hinder the implication of traditional resources
as shown in Figure 2. This makes the processing and
decision-making never happen in real-time. To this
point, it is crucial to intelligently automate the process
of data analytics owing to an accurate and effective
prognosis of a target disease.

The recent shifts has shown a tremendous growth
in the use of number-crunching accelerators
i.e., GPUs for computational-hungry and data-
intensive problems, especially to the said biomedical
applications (GraphStream, 2006). GPU overwhelms

the computations of statistics in crucial bio inspired
applications encompassing big data. Furthermore,
these devices coupled with Microsoft Direct 3D
leverages the computation of huge finite element
methods (Zhang et al., 2018). It was originally
designed for gaming purpose; however, later real
scientific domains espoused it owing to the inherit
massively parallel architecture. GPU can perform
graphics operations at the orders of magnitude faster
as compared to a general purpose CPU due to its
architectural design. This is happening because of
hundreds and even thousands of cores hosted on a
single GPU chip that can perform such operations
incredibly fast. The number of threads is also
increased up to thousands due to the incremental
improvements in the GPU core technology – fueled
by the tremendous demands of performance-critical
applications.

Recent trends in novel standalone GPU and GPU
cluster designs (NVIDIA 2009, 2012) setup support
dynamic parallelism, multiple kernel launches, and
all standard integer and floating-point computations
supported by traditional CPUs, and a shift towards
general-purpose computation. Such drastic
improvements are a step towards enabling GPU an
ideal chip for scientific and engineering applications
with a significant amount of parallelism. Tremendous
parallelism is required in order to map and address
the market needs of increasing data- and compute-
intensive workloads. Benchmark workloads have been
provided by the GPU community such as MGPU
Sim, MLPerf and state of the art benchmarks those
address the concurrency requirements in order to
address the simulation requirements for a range
of domain applications with a configurable GPU
architecture based on user requirements against a
complementary CPU machine (John et al., 2008).
Examples of such computationally and data intensive
applications include acceleration of molecular
dynamics such as continuous and constant pH
molecular dynamics (Bryer et al., 2019), profiling
simulation dynamics of largescale molecules (Allec
et al., 2019), and a heterogeneous based setup for
the simulation of important and large chemical and
biological molecules for an improved performance
(John et al., 2010).

Furthermore, GPUs have been incorporated for an
improved simulation and uncovering the underlying
physics of interactions happening between residues

December 2020 | Volume 39 | Issue 2 | Page 145

Journal of Engineering and Applied Sciences
pertaining to differing families of proteins (Haldane
et al., 2021), accelerating the prediction of important
proteins absolute/relative interactions and binding
phenomenon for crucial drug design (He et al., 2020),
accelerated computation of features in proteomics
data sets that is generated by MS (Hussong et al.,
2009), detecting cardiac arrhythmias and critical
cardiac disorders in electric current in real time that
stems from the relaxation and contraction behavior
of heart muscles and hence, significantly reducing the
death rates by detecting and addressing the disease at
an early stage (Sehgal et al., 2019), simulating cardiac
at a tissue level that involves calculations of billions of
partial differential equations in merely few milliseconds
(Vasconcellos et al., 2020) simulation of cardiac tissue
in real-time (Sato et al., 2009), accelerated simulation
of ECG (Shen et al., 2009), GPU-accelerated MRI
reconstruction algorithms, for instance, reconstructing
a human brain in order to blend the orientations up
to a fiber level using Bayesian based estimations, using
monte carlo based simulations to model MRI as well
as scatter corrections involved in a PET for providing
quantitative and quantitative information (Zhuo et al.,
2011), separating overlapping spikes recorded from
neuronal activity (Schofield et al., 2019), a software
based model i.e., Neuro GPU for simulating neurons
and its activities on GPU hardware (Ben-Shalom et
al., 2020) and collateral mining of the spike streams
stemming from neurons in an MEA experiment (Cao
et al., 2010).

Specifically, in biomedical computing domain GPUs
can become computational biochips instead of
standalone computational chips due to its pervasive
adoption in the domain. Furthermore, efforts have also
shown significant improvement in the performance
by coupling GPU processing with enhanced I/O
techniques in order to overlap the communication
with the computation for an accelerated computing
(Rafique et al., 2009, 2010).

This review discusses the hardware and software
architecture of GPUs followed by the examples
of biomedical applications suffering from high-
dimensional and noisy data and that entails processing
in real-time. We further survey efficient use of GPUs
for automating the process of finding interesting
patterns in real-time in these applications.

Overview of graphic processing unit (GPU)
GPUs are specialized electronic chips originally

designed for graphics and gaming applications.
However, due to their highly parallel architecture,
they are now adopted by scientific community for
massive scientific computations. GPUs are typically
coupled with CPU as a co-processor to accelerate
the data-parallel and compute-intensive jobs. As
compared to CPUs, GPUs are very efficient in
processing embarrassingly parallel applications
e.g., computer graphics, image processing, ray-
tracing, computational fluid dynamics, molecular
dynamics, cardiac simulations, bioinformatics etc.
The performance-critical and data-parallel portions
called hot-spots are identified in applications and
accelerated by offloading to the GPUs. Normally, the
control code consisting of branches and conditions
is executed on CPU. This hybrid computing with
control-code on CPU and data-parallel code on GPU
results in significant performance improvement. The
CPU typically has 2, or 4 cores, while GPU has
hundreds of cores on chip as shown in Figure 1.

Figure 1: CPU coupled with GPU: The data is transferred from the
primary to the device memory. After kernel-run on the device, the
results transcript to main-memory for visualization purpose.

CUDA programming model
The CUDA kernel comprises of lightweight threads
classified in blocks, which are further batched into
a grid kernel as illustrated in Figure 2. Typically, a
block can support up to a maximum of X (512 etc.)
threads and a minimum of 64 threads. In newer
GPUs such as 1080Ti that has 3584 cores can run
up to a maximum of 16x3584 threads concurrently,
where as one GPU core can run 16 threads. A batch
of 32 threads constitutes a thread block that is called
a warp. Furthermore, shared memory which is an
expensive memory is basically available to the entire
threads within a block and thus, synchronizing the
entire threads in that particular block. In contrary, the
threads residing in different blocks do not encourage

December 2020 | Volume 39 | Issue 2 | Page 146

Journal of Engineering and Applied Sciences
sharing of the shared memory and therefore, prohibits
synchronization across the blocks. The entire thread
set within a kernel launch has the right to access global
memory. In a branch divergence issue, the threads
within a block split apart and crunch a chunk of code,
while another portion of the threads consume another
piece of the code. In such cases, synchronization per
thread block i.e. sync threads is ultimately required.
Such synchronization ensures that the whole threads
in a particular block are consummated and have
attained an ordained barrier.

Figure 2: CUDA thread hierarchy. Threads are grouped into warps.
Each block contains at least two warps. Blocks are further grouped
into Grids.

Furthermore, the programmer has the freedom to tweak
the execution configuration pertaining to a kernel by
altering dimensions of a block. The indexing scheme
designed for threads pertaining to higher dimensions
becomes x+yDx and x+yDx+zDyi.e., for 2-dimensions
(Dx, Dy) and 3-dimensions (Dx, Dy, Dz) size of blocks,
respectively. Regardless of the dimensionality issue,
the entire threads do not dare to cross the maximum
threshold set off by the hardware architecture. This
features enables launching of different execution
configurations in order to map a gamut of target
applications on a GPU for an enhanced performance.
Legacy architectures with capability < 2.0 such as
Tesla-based GPUs only allow one kernel launch at a
given time. Collaborative kernels organize themselves
successively and run independently on a GPU.
However, multiple kernels can be launched to execute
collaterally as shown in Figure 3. Furthermore, new
features allow altering an execution configuration on
fly without the interference of a CPU and therefore,
facilitate dynamic parallelism.

For instance, consider the example of a simple
squaring function. To efficiently execute this on GPU,
we assign each thread a single item to square it. All
the threads compute their respective multiplications
required for squaring concurrently in SIMD fashion.
Once all the multiplications are finished, the threads
are synchronized before sending results back to the
CPU for display purposes. The notion of assigning
each multiplication to a single thread is similar to loop
unrolling, because it’s a loop that computes all the

multiplications involved in the squaring function on
the CPU, and here we break the overall computation
into concurrent operations by distributing it among
multiple threads to execute in parallel instead. Hence,
all the threads crunch same piece of code at the same
time.

Figure 3: Multiple kernel launches on the GPU. Different
combination of the # of thread blocks and # of blocks per grid can be
used for multiple kernels.

Table 1 illustrates this example by showing the
sequential loop on the CPU, and its CUDA version
on the right hand side. The square function array takes
an array of length N; and multiplies them individually
to find the squares of all the data items in the array.

Table 1: CPU sequential code vs. GPU code for
implementing the dot product.

However, its parallel counterpart in CUDA spawn
threads equal to the number of multiplications i.e. N,
such that each thread corresponds to a particular item

December 2020 | Volume 39 | Issue 2 | Page 147

Journal of Engineering and Applied Sciences
of the input array. Note that, millions of threads can
be launched on current GPU architecture. However,
programmers can constraint the number of threads
to N for smaller value of N (few hundreds). Also, this
number is limited by the usage of underlying hardware
resources discussed in the GPU architecture section.
To get the corresponding position of the elements in
the array; the number of threads is multiplied with the
block index, and added to the local index of the thread
within the block. Let’s suppose the size of each array
is N = 4096 items, and the # (blocks) = 16, and the
threads/block, block Dim.x is 256. The block Idx.x
keeps track of the individual block ids, while threads
Idx.x is the index of the individual thread within the
block. To access 1000th item in the input arrays, the
thread index becomes 3*256 + 232 according to the
equation of tid shown in Table 1; where block Idx.x is
3; block Dim.x is 256 and thread Idx.x is 232; equals
to 1000.

GPU architecture
The scalable streaming multiprocessors (SMs) hosting
at least eight streaming processors (SPs) also called
cores constitutes the underlying hardware of a GPU,
as highlighted in Figure 3. The warp which is batch
of 32 threads that can run concurrently is scheduled
to execute on SMs, in SIMD fashion. However,
scheduling of warps on SMs is not exposed to the
programmer. CUDA schedules multiple blocks to
run concurrently on same SM. The space of shared
memory and aggregate of registers determines the
maximum number of concurrent blocks that can be
scheduled on an SM instantaneously. The scheduler
makes sure that the whole set of threads in a block
gain access to the required resources before scheduling
it on an SM. The blocks executing on an SM at any
instant are referred as active blocks.

The shared memory is implemented as an SRAM
with an SM, and has very low latency, almost as
registers. However, global memory comes as an
off-chip DRAM and has high latency as compared
to shared memory. Additionally, GPU has read-
only memories: constant and texture memory as
an off-chip accessible by all the threads in a kernel
launch. Constant memory is used for storing kernel
parameters in newer architectures such as Fermi.
Texture memory offers different addressing modes
and can be used for 2-D pre-fetching for 2D texture
memory etc.

Impact of GPUS in crucial biomedical applications
GPUs have been an effective solution for parallelizing
the compute-intensive jobs in biomedical applications.
The example applications are discussed below.

Demand of acceleratoin in mass spectrometry
analysis: An analytical technique that measures the
expression analysis of proteins from charge to mass
ratio of ions constitutes mass spectroscopy (MS).
The technique basically provides information about
the molecular formula and weight and the relative
proportion of hydrogen, oxygen and carbon in a target
compound. Such approach has several applications in
medical diagnostics to differentiate between the sick
and healthy, biomedical engineering, and therapy. MS
further helps in unveiling the mass, structure, and
composition of the molecules under study ranging
from pure samples to much complicated mixtures e.g.,
peptides which are digested proteins. Furthermore,
the technique helps in decision-making such as
finding the presence of a disease. The ionization
and acceleration of peptides within an MS helps in
determining the inherit fingerprint by analyzing the
intensity against mass.

The mass to the charge ratio, y-axis that portray the
intensity along with the z-axis as additional parameters
produce the output as 3D contours for further
analysis. The problem with MS is that it generates
larger streams of data and can quickly overflow
hundreds of gigabytes. GPU-based implementation
provides a faster approach for automating the feature
detection using adaptive wavelet transform (Hussong
et al., 2009). The ideal case for the results is higher
precision without sacrificing the performance.

Convolution is naturally a parallel operation and
therefore, enables the algorithm to map well enough
to the underlying parallel architecture. The number
of threads that is proportional to the data points
performs convolution concurrently in CUDA. The
algorithm intelligently splits the map (an input
of scan points) such that each piece contains 512
points. Part of the reason is that the conventional
architectures support up to a maximum number of
512 threads/block. An individual thread ascertains
the convolution operation on a corresponding
itemwith respect to the neighborhood items. The goal
is to load additional points into the shared memory
for facilitating convolution of the intensities that
are in the neighborhood of the assigned point per

December 2020 | Volume 39 | Issue 2 | Page 148

Journal of Engineering and Applied Sciences
thread. It is pertinent to mention that the points in
the neighborhood fetched for a specific convolution
of data point cannot be computed in prior. This
difficulty in computing mainly arises due to the
irregular spacing in an MS data. In safe mode, a
maximum quantity of the memory is dedicated to
load the whole associated points in the neighborhood
that is based on the maximum mass.

The author has implemented two GPU-based
implementations with varying compute and memory
capabilities. The counter implementation on CPU
uses 8 cores tuned at 2.3 GHz with 16GB main
memory. The simple implementation on GPU loads
spectrum in texture memory and shows significant
speedup. An implementation uses an on chip shared
memory for storing and computing spectrum data
further accelerates the computation. Such approach
even with the lack of approximations is faster
without sacrificing better quality results, resulting
in 200X speedup using real-world protein data in
contrast to the analogous code on CPU. Furthermore,
implementation on a contemporary device produces
an acceleration up to 10X faster. These analyses
demonstrate that analyzing larger scale proteomics
entails incorporating advanced GPUs.

Recent research such as GPU-DAEMON illustrates
a speed of 386 times over CPU-version and an
acceleration of up to 50 times over previous GPU
version. GPU-DAEMON aims at achieving
maximum occupancy on GPU hardware, an optimized
algorithm, an efficient use of memory. Combined
these approaches result in an improved performance.
Furthermore, three cases studies stemming from
GPU-DAMEON in the form of GPU-ArraySort,
G-MSR and GPU-PCC has been presented.

Accelerated medical imaging
Magnetic Resonance Imaging (MRI) provides
quantitative and definitive insights for medical
imaging, especially in detecting tumors in human
brain and monitoring the functioning of heartbeats.
MRI has the ability to study cancer and produces
better images in order to contrast between the
different soft tissues of the body as compared to the
CT–Computed Tomography or radiographs. The data
acquired from clinical trials need to reconstructed
for analyzing disease progression with minimal
losses in an image quality. The automation of MRI
imaging is not so straightforward mainly because of

the imaging artifacts, higher frequency noise, and an
extended acquisition time. Furthermore, the scanning
trajectory that can be either Cartesian or non-
Cartesian has a profound effect on the reconstructed
radiographs quality. The scanned trajectory can be
either cartesian or non-cartesian. Nonetheless, a non-
Cartesian trajectory is preferable in MRI because of
the resiliency it offers to noise. Such reconstruction
computation is trivial; however, it does not inculcate
the anatomical information (Halder et al., 2008). The
anatomical information used for an optimal image
reconstruction (Fessler et al., 2005; Pruessmann et
al., 2001; Sutton and Fessler, 2003) helps in reducing
the noise and achieve a higher SNR per scan while
does not affect the resolution of the target image
features. Sophisticated reconstruction algorithms
devised for scalable problems in clinical trials and
disease progression can be accelerated on GPUs for
a real time solution. A typical non-uniform scan
in a reconstruction technique consumes merely 2
minor even less on a GPU-based implementation
as compared to its counter CPU code that takes
approximately 23 minutes as captured by Stone et al.
(Stone et al., 2008). These advanced reconstruction
algorithms are faster as well as more precise i.e.
the GPU produces 12% error as compared to the
analogous CPU code that results in an error of 42 %.
The implementation of reconstruction algorithm on
GPU varies from a naive implementation with zero
optimizations to a little optimized version and even
well-tuned implementations that incorporates the
best match of loop unrolling by a factor of 5, tiling
2048 scan points in an individual thread and 320 the
number of threads/block for the target application.

Note that these parameters vary from application
to application depending upon data-parallel nature
of the application. In the given case, such tuning
tremendously reduces the aggregate of accesses to
the global memory, which further mitigates the off-
chip memory bandwidth and therefore, results in an
improved performance. More specifically, the runtime
reduces to 59 seconds. In comparison, running well-
tuned version on a multi-GPU setup results in an
accumulated runtime of 18 sec. It is pertinent to
mention that a floating-point computation of single
precision along with trigonometric operations that
are approximated provides an improved performance
and less error in the real image. However; there is
a better chance to degrade the output. Enhancing
the standard of the acquired images along with

December 2020 | Volume 39 | Issue 2 | Page 149

Journal of Engineering and Applied Sciences
an accelerated implementation will increase the
throughput of the scanner and thus will increase the
patient comfort. Interestingly, a speed up from 2X
to 9X has been attained for the said reconstruction
algorithms (von Rymon-Lipinski and Keeve, 2004;
Sumanaweera and Liu, 2005; Schiwietz et al.,
2006). IBM technology group have used Cell BE to
accelerate MRI reconstruction up to 17 times.

Recent efforts show an acceleration ranging from
28.81 – 89.12 with an increasing size of images
from 128 x 128 – 1024 x 1024 without sacrificing
the performance pertinent to the segmentation.
Achieving an optimal performance for automated
image registration algorithms is crucial to MRIs. The
automated image registration algorithm computes
an optimal mapping for the source image against
the reference image through similarity metrics and
transformations. These metrics are further optimized
in order to compute an optimal transformation
based on the similarity metrics. Unfortunately, these
registrations involve outstanding iterations and
therefore, are deliberate even on a typical workstation.
Such behavior obstructs the post-processing of
medical images for useful decision-making. GPU-
based MRIs approaching to 14-fold acceleration
for image registration techniques has been reported
(Huang et al., 2011).

GPUS in electrocardiography (ECG)
ECG is a gold standard for monitoring and recording
the electrical activity pertaining to a human heart. It
provides little discomfort to the patient and is more
ubiquitous than MRI and CT scans. Furthermore, the
technique captures the activity of heart in 3D / 4D
views. The raw data acquired from these applications is
higher in volume and pose challenge when rendering
especially the images with higher dimension as those
are computationally expensive.

GPUs underlying parallel architecture can be exploited
to render images of higher dimensions from the
sampled ultrasound data and attempts to approaches
to the speed that is required by a human heart
(GPU Gems). GPUs have shown 13.03 times faster
computations to its sequential counter code (Shen
et al., 2009). However, the demand for an increasing
amount of data needed in GPU computation hampers
the additional acceleration. The sophisticated GPU
setup can cause a revamped performance due to an
increased number of cores, larger spaces of memory,

and an increased bandwidth of memory that bridges
between the device and CPU.

In a smartphone-based approach for a quicker and
easier detection of ECG, a speed of about 6x is
achieved on average, while a maximum speed up
of 23x is reported, especially in artifact removal.
The study utilizes a qualcomm based processor i.e.,
Snapdragon 820 coupled with a GPU of Adreno
530 with a memory of 6 GB. Such processor hosts
two cores at 2.15 GHz, while the GPU supports 256
arithmetic and logic units that are clocked at 624
MHz optimized for parallel computation.

Ray casting is another technique that is frequently
used for rendering the volume. This technique aims
to project 2D data into a 3D plan through tracing out
the rays from a viewpoint into a viewing volume. A
volume rendering framework for ultrasound datasets
that incorporates GPU-based volume rendering has
been developed (Lim et al., 2009).

Automated analysis of multi-electrode neuron action
potentials
EEG, fMRI, and MEAs are techniques aimed
for recording and analysis of the neuronal activity
of human brains, but the problem with these
approaches is that they do not allow to record single
neuron activity. To record a neuronal activity up
to the granularity of a single neuron, a technique
called single-unit recording is used. Single-unit
recording measures electrophysiological activities of
a single neuron through microelectrode system. This
allows measuring of the intra- and extra-cellular
phenomenon of a human brain, the action potentials.
The measured information can be applied to Brain
Machine Interface (BMI) to record the brain activity
(action potential) and decode it into the intended
response, which can control the movement of an
external device e.g., prosthetic limb in assistive
technologies, or computer cursor. Cao et al. (2010)
has focused on the use of data mining algorithms
towards the neuronal event streams stemming from
the MEA to analyze the human brain.

The interesting firing patterns of the spikes in
neuron action potential gives cognizance into the
underlying cellular level activity of a neuronal tissue.
The challenge in analyzing such useful insights are
the sizable event streams accumulated from an
MEA and a classical 64 channel MEA can simply

December 2020 | Volume 39 | Issue 2 | Page 150

Journal of Engineering and Applied Sciences
end up in a couple of million pulses of data merely
in a few seconds. Furthermore, these experiments
can keep running for months resulting in hundreds
of millions of neuronal action potentials. Analyzing
these larger datasets entails high-end data storage
and computing resources. Not to mention, extracting
useful patterns in the mentioned data in real-time
requires dimensionality reduction and intelligent
classification techniques.

The goal is to concurrently compute the frequency
episodes between non-overlapped occurrences in the
event streams. One thread per Occurrence fulfills
the requirement of mining lesser episodes, while
the two-pass elimination counts the larger quantity
of episodes. The problem with the former approach
is that it utilizes GPU much below its potential due
to the dependencies in the data and the accompanied
branch divergence that serializes the code and
hence making it harder to be parallelized. The later
approach assigns one episode per thread. If there
are many episodes, GPU can be utilized to its full.
Based on the query of length 5, which needs 97 byte
of registers and 220 bytes of shared memory, merely
32 threads can be schedule on a GPU, which hosts
only 16KB of registers and the shared memory. The
elimination of unsupported episodes followed by the
complex state machine (two-pass elimination) to
mine the supported episodes, not only improve the
performance but also results in less time complexity as
compared to the overall complex state-machine based
algorithm (hybrid algorithm). Since local memory can
be used as alternate to registers and is stored in global
memory, which is accessed frequently and hence,
incurs larger latency. This also comes from the fact
that hybrid approach uses 80 bytes of local memory
and 17 registers, in contrast to the elimination
algorithm, which needs 13 registers without any local
memory. Moreover, for greater number of episodes;
the number of memory accesses are least by the two-
pass elimination technique over the hybrid approach.
Finally, the algorithms are evaluated on an NVIDIA
GTX280 GPU.

Another study that stresses a real-time analysis include
the processing of large neuronal data emerging from
assistive technologies (Romero-Ortega et al., 2009).
The duty cycle needed to capture the activity of
neuronal action potential ranges from a section to a
couple of milliseconds (Lewicki, 1998). This requires a
sampling rate of fewer kHz. Considering a resolution

of 1 byte that can lead to 256 distinct voltage levels
for an individual electrode, the system must have the
ability of measuring at least at 1 million Bytes/sec.
The necessity for adapting to higher rates of potentials
can easily overflow fewer GB per second due to the
agglomerated rates. The conventional techniques that
encompass fewer electrodes trust on pushing raw data
in storage devices for batch processing, which costs
longer turnabout pauses from the actual collection
of data to the excitation of neurons for generating
important electrical stimulants. Such longer delays
are unacceptable for assistive technologies. To this
end, we need high-performance GPUs for real time
neuronal action potentials.

Along those lines, a recent study uses a GPU-revamped
simulator based on neural networks approach to
simulate a human brain with a developed tool
Brain2GeNN. This study demonstrates a maximum
speed up of more than 200 fold compared to a
standalone CPU core, while simulating one million
neurons based on Hodgkin-Huxley (Stimberg, 2018).
For other models, GeNN shows differing speedups.

Conclusions and Recommendations

The speedup achieved in different applications
with the use of GPUs: 200x over real data-sets in
mass spectrometry; making MRI reconstruction
algorithms up to 9X faster; and a speedup of more
than twice for ECG calculations; suggests that
inherent parallelism in such biomedical applications
matches the massive parallelism of GPU devices
and provides naturally high-performance computing
platforms to compute results for such applications in
real-time for decision making. The speedup achieved
with GPU in pore application is fascinating. Massive
loop-level parallelism has the potential to harness full
computational power of GPUs. The more inherent
parallelism an application has, the more acceleration it
gets with GPUs. Unfortunately, the branch divergence
and data dependency in code result in de-acceleration
on GPUs; as such behavior makes the code sequential
instead. This ideally suggests running conditional
and control code on CPUs and off-loading the data-
parallel and compute-intensive jobs to GPUs.

The GPUs are promising for the biomedical
applications but offers several challenges. The
programming effort required to learn CUDA-style
coding itself poses a challenge. Furthermore, the

December 2020 | Volume 39 | Issue 2 | Page 151

Journal of Engineering and Applied Sciences
application development involves learning usage of
different types of memories on GPU, and the I/O
communication involved between the CPU and
GPU. One key challenge is the limited memory
and I/O resources of GPU. The cost of off-loading
larger data-inputs on GPU is non-trivial, and in
some applications frequent memory transfers incurs
significant pressure on GPU memory, and can choke
the memory bandwidth between CPU and GPU. One
way to mitigate such memory pressure is to divide
the data into smaller chunks, and then stage the data
to the GPU memory for processing. This data chunk
shouldn’t be too small to increase the frequency of data
transfers, leading to less occupancy on GPU cores; and
also, shouldn’t be too large to increase the time per
transfer and making the GPU processing cores idle
most of the time. This need benchmarking on different
size of data chunks to see the trade-offs between the
data-transfer (communication) time and the kernel
execution (computation) time on GPU and selecting
the best match of the data chunk size for the target
application that should be staged to the GPU. The
need of transferring data to GPU comes from the fact
that the input data is huge in biomedical applications
and the GPU has limited on-chip memory and also,
launching kernels on GPU with different execution
configurations can’t be accomplished without the
intervention of CPU. However, the latter case has
been addressed in newly Kepler-based GPUs by
enabling dynamic parallelism where programmer can
change the execution configuration of kernel in flight.
This can help programmer porting more and more
code to GPU without using general-purpose CPU to
launch kernels onto GPU. Nonetheless, applications
with large data-sets (much greater than GPU on-chip
memory size) involves multiple stream with varying
rates will happen by interleaving those streams into
chunks and transferring these onto GPU for the
required computations faithfully.

To cope with this issue given the huge amount of
data of biomedical applications; sophisticated I/O
techniques such as multiple buffering and pre-fetching
can help which can overlap the data transfer from
CPU to GPU with the computation on the GPU, and
improve the performance by reducing the execution
stalls (Venkatesan et al., 2010). This will not only keep
the GPU busy, but will also keep on transferring the
data in parallel to the computation on GPU such
that chunk N-1 is on fly onto GPU, chunk N-2 is
on its way from CPU to GPU and so on enabling

double buffering. However, in Fermi-based setup,
chunk N is on its way back to the CPU from GPU –
empowering triple buffering. Such buffering can help
in pipelining the process and hence, improving the
overall throughput of the system.

From this survey, we conclude that the due to the
massively parallel architecture of GPUs and the
recent advances Kepler-based GPUs and even newer
GPUs that will come in future will better leverage the
biomedical algorithms along with the increase in the
algorithmic complexity towards the increasing data
demands of biomedical applications. This enables
GPUs potentially viable in biomedical community to
achieve the goal of real-time diagnosis and decision-
making in clinical setup, and GPUs for bioinformatics
will remain a vibrant research area in the future.

Novelty Statement

This is a review paper that discusses the trade-offs
involved in the use of Graphics Processing Units
(GPUs) for accelerating various steps in biomedical
applications, especially those entailing bio-imaging.
Such review work will help future researchers to
leverage GPU intelligently and efficiently in order to
find useful insights for disease diagnosis.

Author’s Contribution

Abdul Hafeez: Main idea, state of the art discussions,
future directions, drafted the paper
Akhtar Nawaz Khan: Writing/revisions and editing,
provided research material
Zahid Ullah: Writing/revisions and editing, provided
research material.

Conflict of interest
The authors have declared no conflict of interest.

References

Allec, S.I., Y. Sun, J. Sun, C.A. Chang and B.M.
Wong. 2019. Heterogeneous CPU+ GPU-
enabled simulations for DFTB molecular
dynamics of large chemical and biological
systems. J. Chem. Theory Comput. 15: 2807-
2815.

Ben-Shalom, R., N.S. Athreya, C. Cross, H.
Sanghevi, K.G. Kim, A. Ladd, A. Korngreen,
K.E. Bouchard, and K.J. Bender. 2020.

December 2020 | Volume 39 | Issue 2 | Page 152

Journal of Engineering and Applied Sciences
NeuroGPU, soft-ware for NEURON modeling
in GPU-based hardware. bioRxiv, 727560.

Bryer, A., J. Eric, F. Wright, M. Ferrato, T. Huber,
E. Ortiz, R. Searles, S. Chandrasekaran and
J.R. Perilla. GPU accelerated computation of
isotropic chemical shifts offers new dimension
of structure refinement in largescale molecular
dynamics simulation. Biophys. J. 116:
569a-570a.

Cao, Y., D. Patnaik, et al., 2010. Towards chip-on-
chip neuroscience: Fast mining of neuronal
spike streams using graphics hardware.
Proceedings of the 7th ACM international
conference on Computing frontiers,
New York, NY, USA, ACM. https://doi.
org/10.1145/1787275.1787277

Fessler, J.A.S.L., V.T. Olafsson, H.R. Shi and D.C.
Noll. 2005. Toeplitz-based iterative image
reconstruction for MRI with correction for
magnetic field inhomogeneity. IEEE Trans.
Signal Process., 53(9): 3393-3402. https://doi.
org/10.1109/TSP.2005.853152

GraphStream, I., 2006. GraphStream scalable
computing plateform (SCP).

Haldane, A. and R.M. Levy. 2021. Mi3-GPU:
MCMC-based inverse Ising inference on
GPUs for protein covariation analysis. Comp.
Phys. Commun. 260: 107312.

Halder, J.D.H., S.-K. Song and Z.-P. Liang. 2008.
Anatomically-constrained reconstruction from
noisy data. Magnetic Resonance in Imaging.
https://doi.org/10.1002/mrm.21536

He, X., S. Liu, T.-S. Lee, B. Ji, V.H. Man, D.M.
York and J. Wang. 2020. Fast, accurate, and
reliable protocols for routine calculations of
protein–ligand binding affinities in drug design
projects using AMBER GPU-TI with ff14SB/
GAFF. ACS Omega, 5: 4611-4619.

Huang, T.Y., Y.W. Tang, et al., 2011. Accelerating
image registration of MRI by GPU-based
parallel computation. Magnet. Resonance
Imag., 5: 712–716. https://doi.org/10.1016/j.
mri.2011.02.027

Hussong, R., B. Gregorius, et al., 2009. Highly
accelerated feature detection in proteomics data
sets using modern graphics processing units.
Bioinformatics, 25(15): 1937-1943. https://doi.
org/10.1093/bioinformatics/btp294

John, D., M.H. Owens, D. Luebke, S. Green,
J.E. Stone and J.C. Phillips. 2008. GPU
computing. Proc. IEEE 96: 879-899. https://

doi.org/10.1109/JPROC.2008.917757
John, E.S., D.J.H. Ivan, S. Ufimtsev and K.

Schulten. 2010. GPU-accelerated molecular
modeling coming of age. J. Mol. Graphics
Model., 2: 116-125. https://doi.org/10.1016/j.
jmgm.2010.06.010

Lewicki, M.S., 1998. A review of methods for spike
sorting: the detection and classification of neural
action potentials. Network Comput. Neural
Syst., 4: 53-78. https://doi.org/10.1088/0954-
898X_9_4_001

Lim, S., K. Kwon, et al., 2009. GPU-based
interactive visualization framework for
ultrasound datasets. Comput. Animat. Virt. W.,
20(1): 11-23. https://doi.org/10.1002/cav.279

Mathe, J., A. Aksimentiev, et al., 2005. Orientation
discrimination of single-stranded DNA inside
the α-hemolysin membrane channel. Proc. Natl.
Acad. Sci. USA, 35: 12377-12382. https://doi.
org/10.1073/pnas.0502947102

NVIDIA, 2009. Whitepaper NVIDIA Next
Generation CUDATM Compute Architecture:
FermiTM.

NVIDIA, 2012. Whitepaper NVIDIA Kepler GK
110.

Pruessmann, K.P.M.W., P. Bornert and P. Boesiger.
2001. Advances in sensitivity encoding with
arbitrary k-space trajectories. Magn. Res.
Med., 46(4): 638-651. https://doi.org/10.1002/
mrm.1241

Rafique, M.M., A.R. Butt, et al., 2010. Designing
accelerator-based distributed systems for high
performance. 10th IEEE/ACM International
Conference on Cluster, Cloud and Grid
Computing (CCGrid) IEEE. https://doi.
org/10.1109/CCGRID.2010.109

Rafique, M.M., B. Rose, et al., 2009. CellMR:
A framework for supporting mapreduce on
asymmetric cell-based clusters. Proceedings
of the 2009 IEEE International Symposium
on Parallel\and Distributed Processing,
IEEE Computer Society: 1-12. https://doi.
org/10.1109/IPDPS.2009.5161062

Romero-Ortega, M.I., A.R. Butt, et al., 2009.
Carbon nanotube coated high-throughput
neurointerfaces in assistive environments.
Proceedings of the 2nd International Conference
on PErvasive Technologies Related to
Assistive Environments, ACM. https://doi.
org/10.1145/1579114.1579181

Sato, D., Y. Xie, et al., 2009. Acceleration of cardiac

https://doi.org/10.1145/1787275.1787277
https://doi.org/10.1145/1787275.1787277
https://doi.org/10.1109/TSP.2005.853152
https://doi.org/10.1109/TSP.2005.853152
https://doi.org/10.1002/mrm.21536
https://doi.org/10.1016/j.mri.2011.02.027
https://doi.org/10.1016/j.mri.2011.02.027
https://doi.org/10.1093/bioinformatics/btp294
https://doi.org/10.1093/bioinformatics/btp294
https://doi.org/10.1109/JPROC.2008.917757
https://doi.org/10.1109/JPROC.2008.917757
https://doi.org/10.1016/j.jmgm.2010.06.010
https://doi.org/10.1016/j.jmgm.2010.06.010
https://doi.org/10.1088/0954-898X_9_4_001
https://doi.org/10.1088/0954-898X_9_4_001
https://doi.org/10.1002/cav.279
https://doi.org/10.1073/pnas.0502947102
https://doi.org/10.1073/pnas.0502947102
https://doi.org/10.1002/mrm.1241
https://doi.org/10.1002/mrm.1241
https://doi.org/10.1109/CCGRID.2010.109
https://doi.org/10.1109/CCGRID.2010.109
https://doi.org/10.1109/IPDPS.2009.5161062
https://doi.org/10.1109/IPDPS.2009.5161062
https://doi.org/10.1145/1579114.1579181
https://doi.org/10.1145/1579114.1579181

December 2020 | Volume 39 | Issue 2 | Page 153

Journal of Engineering and Applied Sciences
tissue simulation with graphic processing
units. Med. Biol. Eng. Comput., 9: 1011-1015.
https://doi.org/10.1007/s11517-009-0514-4

Schiwietz, T., T. Chang, et al., 2006. MR image
reconstruction using the GPU. Proceedings of
SPIE. https://doi.org/10.1117/12.652223

Schofield, D.J., L. Irving, L. Calo, A. Bogstedt,
G. Rees, A. Nuccitelli and R. Narwal, 2019.
Reclinical development of a high affinity
α-synuclein antibody, MEDI1341, that can enter
the brain, sequester extracellular α-synuclein
and attenuate α-synuclein spreading in vivo.
Neurobiol. Dis., 132: 104582.

Sehgal, A., N. Linduska, and C. Huynh. 2019.
Cardiac adaptation in asphyxiated infants
treated with therapeutic hypothermia. J.
Neonat.-Perinat. Med., 12: 117-125.

Shen, W., D. Wei, et al., 2009. GPU-based
parallelization for computer simulation of
electrocardiogram. Ninth IEEE International
Conference on Computer and Information
Technology, CIT IEEE. https://doi.
org/10.1109/CIT.2009.134

Stone, S.S., J.P. Haldar, et al., 2008. Accelerating
advanced MRI reconstructions on GPUs. J.
Parallel Distrib. Comput., 68(10): 1307-1318.
https://doi.org/10.1016/j.jpdc.2008.05.013

Sumanaweera, T. and D. Liu. 2005. Medical image
reconstruction with the FFT. GPU Gems, 2:
765-784.

Sutton, B.P.D.C.N. and J.A. Fessler. 2003. Fast
iterative image reconstruction for MRI in
the presence of field inhomogeneities. IEEE
Trans. Med. Imag., 22(2): 178-188. https://doi.
org/10.1109/TMI.2002.808360

Venkatesan, B.M., A.B. Shah, et al., 2010. DNA
Sensing using nanocrystalline surface-enhanced
Al2O3 nanopore sensors. Adv. Funct. Mater.,
20(8): 1266-1275. https://doi.org/10.1002/
adfm.200902128

Vasconcellos, E.C., E.W.G. Clua, F.H. Fenton and
M. Zamith. 2020. Accelerating simulations of
cardiac electrical dynamics through a multi-
GPU platform and an optimized data structure.
Concurr. Comput.Pract. Exp. 32: e5528.

von Rymon-Lipinski, T.J.B. and N.H.E. Keeve.
2004. Fourier volume rendering on the GPU
using a split stream FFT. Vision, Modeling, and
Visualization Ios Pr Inc: 395.

Zhang, J., J. Hills, Y. Zhong, B. Shirinzadeh, J.
Smith, and C. Gu. 2018. GPU-accelerated
finite element modeling of bio-heat conduction
for simulation of thermal ablation. J. Mech.
Med. Biol., 18: 1840012.

Zhuo, Y., X.L. Wu, et al., 2011. Using GPUs to
accelerate advanced MRI reconstruction with
field inhomogeneity compensation. GPU
Computing Gems, Emerald Edition. Elsevier.
https://doi.org/10.1016/B978-0-12-384988-
5.00044-9

https://doi.org/10.1007/s11517-009-0514-4
https://doi.org/10.1117/12.652223
https://doi.org/10.1109/CIT.2009.134
https://doi.org/10.1109/CIT.2009.134
https://doi.org/10.1016/j.jpdc.2008.05.013
https://doi.org/10.1109/TMI.2002.808360
https://doi.org/10.1109/TMI.2002.808360
https://doi.org/10.1002/adfm.200902128
https://doi.org/10.1002/adfm.200902128
https://doi.org/10.1016/B978-0-12-384988-5.00044-9
https://doi.org/10.1016/B978-0-12-384988-5.00044-9

