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Introduction

In addition to the traditional approaches, the design 
of novel systems and techniques at meso, micro, 

and even nanoscale has sparked new methods in 
order to explore and analyze the molecular origins 
of critical diseases. Miniaturize electronics devices 
atop these endeavors has triggered the measuring 

of molecular interactions using resilient approaches 
that can precisely transduce biotic interactions at a 
rudimentary scale. Such profound attempts promise 
to leverage instruments appropriate for diagnosing 
diseases at an early stage, scan prognosis in a finer detail, 
and follow and predict the drift of disease evolution 
in counter to the state of the art medicine and novel 
remedies. However, these approaches suffer by one-
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way or the other from large data sets. Conventional 
approaches including mass spectrometry (MS), multi-
electrode arrays (MEA), and magnetic-resonance 
imaging (MRI) generate multi-dimensional and 
high-throughput data. The quantity of the measured 
data per unit time has progressed on the order 
of magnitude i.e., exponentially in resolution as 
well as in dimensionality, partly because of high-
spatial resolution as well as finer discretization of 
the measured signals/images. Therefore, it has set 
off almost impossible to correctly distill interesting 
patterns in the arising real-time streaming data using 
traditional approaches.

The emerging accelerators and heterogeneous-based 
computing especially graphics processing units 
(GPUs) have shown huge potential in accelerating 
biomedical applications. Epidermal Electronics 
System (EES) is one such direction, a breakthrough 
research for measuring EEG, ECG, and EMG. The 
performance for measuring these activities is up to 
the par so far. With the passage of time such system 
will expand them to measure other essential human 
activities. This will lead to an increase in the fabrication 
per unit through advanced micro and nanofabrication 
approaches resulting in generating large amount 
of data. Such data deluge will incur delays in the 
detection of diseases and will not produce results at 
the right time and hence the processing will never 
happen in real-time. The delayed diagnosis of the 
patients can further lead to the death in diseases that 
require an immediate attention such as cancer. 

In fact, handling a significant amount of data is non-
trivial and entails significant computing resources. 
More specifically, the huge data streams created by 
MS, MEA, Nanopore measurements, usually using 
a sensor network entails innovative solutions to 
efficiently analyze and compute the target results. An 
advantageous remedy in the discussed design space 
may hinder the implication of traditional resources 
as shown in Figure 2. This makes the processing and 
decision-making never happen in real-time. To this 
point, it is crucial to intelligently automate the process 
of data analytics owing to an accurate and effective 
prognosis of a target disease.

The recent shifts has shown a tremendous growth 
in the use of number-crunching accelerators 
i.e., GPUs for computational-hungry and data-
intensive problems, especially to the said biomedical 
applications (GraphStream, 2006). GPU overwhelms 

the computations of statistics in crucial bio inspired 
applications encompassing big data. Furthermore, 
these devices coupled with Microsoft Direct 3D 
leverages the computation of huge finite element 
methods (Zhang et al., 2018). It was originally 
designed for gaming purpose; however, later real 
scientific domains espoused it owing to the inherit 
massively parallel architecture. GPU can perform 
graphics operations at the orders of magnitude faster 
as compared to a general purpose CPU due to its 
architectural design. This is happening because of 
hundreds and even thousands of cores hosted on a 
single GPU chip that can perform such operations 
incredibly fast. The number of threads is also 
increased up to thousands due to the incremental 
improvements in the GPU core technology – fueled 
by the tremendous demands of performance-critical 
applications. 

Recent trends in novel standalone GPU and GPU 
cluster designs  (NVIDIA 2009, 2012) setup support 
dynamic parallelism, multiple kernel launches, and 
all standard integer and floating-point computations 
supported by traditional CPUs, and a shift towards 
general-purpose computation. Such drastic 
improvements are a step towards enabling GPU an 
ideal chip for scientific and engineering applications 
with a significant amount of parallelism. Tremendous 
parallelism is required in order to map and address 
the market needs of increasing data- and compute-
intensive workloads. Benchmark workloads have been 
provided by the GPU community such as MGPU 
Sim, MLPerf and state of the art benchmarks those 
address the concurrency requirements in order to 
address the simulation requirements for a range 
of domain applications with a configurable GPU 
architecture based on user requirements against a 
complementary CPU machine  ( John et al., 2008). 
Examples of such computationally and data intensive 
applications include acceleration of molecular 
dynamics such as continuous and constant pH 
molecular dynamics (Bryer et al., 2019), profiling 
simulation dynamics of largescale molecules (Allec 
et al., 2019), and a heterogeneous based setup for 
the simulation of important and large chemical and 
biological molecules for an improved performance  
( John et al., 2010). 

Furthermore, GPUs have been incorporated for an 
improved simulation and uncovering the underlying 
physics of interactions happening between residues 
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pertaining to differing families of proteins (Haldane 
et al., 2021), accelerating the prediction of important 
proteins absolute/relative interactions and binding 
phenomenon for crucial drug design (He et al., 2020), 
accelerated computation of features in proteomics 
data sets that is generated by MS (Hussong et al., 
2009), detecting cardiac arrhythmias and critical 
cardiac disorders in electric current in real time that 
stems from the relaxation and contraction behavior 
of heart muscles and hence, significantly reducing the 
death rates by detecting and addressing the disease at 
an early stage (Sehgal et al., 2019), simulating cardiac 
at a tissue level that involves calculations of billions of 
partial differential equations in merely few milliseconds 
(Vasconcellos et al., 2020) simulation of cardiac tissue 
in real-time (Sato et al., 2009), accelerated simulation 
of ECG (Shen et al., 2009), GPU-accelerated MRI 
reconstruction algorithms, for instance, reconstructing 
a human brain in order to blend the orientations up 
to a fiber level using Bayesian based estimations, using 
monte carlo based simulations to model MRI as well 
as scatter corrections involved in a PET for providing 
quantitative and quantitative information (Zhuo et al., 
2011), separating overlapping spikes recorded from 
neuronal activity (Schofield et al., 2019), a software 
based model i.e., Neuro GPU for simulating neurons 
and its activities on GPU hardware (Ben-Shalom et 
al., 2020) and collateral mining of the spike streams 
stemming from neurons in an MEA experiment (Cao 
et al., 2010). 

Specifically, in biomedical computing domain GPUs 
can become computational biochips instead of 
standalone computational chips due to its pervasive 
adoption in the domain. Furthermore, efforts have also 
shown significant improvement in the performance 
by coupling GPU processing with enhanced I/O 
techniques in order to overlap the communication 
with the computation for an accelerated computing 
(Rafique et al., 2009, 2010). 

This review discusses the hardware and software 
architecture of GPUs followed by the examples 
of biomedical applications suffering from high-
dimensional and noisy data and that entails processing 
in real-time. We further survey efficient use of GPUs 
for automating the process of finding interesting 
patterns in real-time in these applications.

Overview of graphic processing unit (GPU)
GPUs are specialized electronic chips originally 

designed for graphics and gaming applications. 
However, due to their highly parallel architecture, 
they are now adopted by scientific community for 
massive scientific computations. GPUs are typically 
coupled with CPU as a co-processor to accelerate 
the data-parallel and compute-intensive jobs. As 
compared to CPUs, GPUs are very efficient in 
processing embarrassingly parallel applications 
e.g., computer graphics, image processing, ray-
tracing, computational fluid dynamics, molecular 
dynamics, cardiac simulations, bioinformatics etc. 
The performance-critical and data-parallel portions 
called hot-spots are identified in applications and 
accelerated by offloading to the GPUs. Normally, the 
control code consisting of branches and conditions 
is executed on CPU. This hybrid computing with 
control-code on CPU and data-parallel code on GPU 
results in significant performance improvement. The 
CPU typically has 2, or 4 cores, while GPU has 
hundreds of cores on chip as shown in Figure 1.

Figure 1: CPU coupled with GPU: The data is transferred from the 
primary to the device memory. After kernel-run on the device, the 
results transcript to main-memory for visualization purpose.

CUDA programming model
The CUDA kernel comprises of lightweight threads  
classified in blocks, which are further batched into 
a grid kernel as illustrated in Figure 2. Typically, a 
block can support up to a maximum of X (512 etc.) 
threads and a minimum of 64 threads. In newer 
GPUs such as 1080Ti that has 3584 cores can run 
up to a maximum of 16x3584 threads concurrently, 
where as one GPU core can run 16 threads. A batch 
of 32 threads constitutes a thread block that is called 
a warp. Furthermore, shared memory which is an 
expensive memory is basically available to the entire 
threads within a block and thus, synchronizing the 
entire threads in that particular block. In contrary, the 
threads residing in different blocks do not encourage 
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sharing of the shared memory and therefore, prohibits 
synchronization across the blocks. The entire thread 
set within a kernel launch has the right to access global 
memory. In a branch divergence issue, the threads 
within a block split apart and crunch a chunk of code, 
while another portion of the threads consume another 
piece of the code. In such cases, synchronization per 
thread block i.e. sync threads is ultimately required. 
Such synchronization ensures that the whole threads 
in a particular block are consummated and have 
attained an ordained barrier. 

Figure 2: CUDA thread hierarchy. Threads are grouped into warps. 
Each block contains at least two warps. Blocks are further grouped 
into Grids.

Furthermore, the programmer has the freedom to tweak 
the execution configuration pertaining to a kernel by 
altering dimensions of a block. The indexing scheme 
designed for threads pertaining to higher dimensions 
becomes x+yDx and x+yDx+zDyi.e., for 2-dimensions 
(Dx, Dy) and 3-dimensions (Dx, Dy, Dz) size of blocks, 
respectively. Regardless of the dimensionality issue, 
the entire threads do not dare to cross the maximum 
threshold set off by the hardware architecture. This 
features enables launching of different execution 
configurations in order to map a gamut of target 
applications on a GPU for an enhanced performance. 
Legacy architectures with capability < 2.0 such as 
Tesla-based GPUs only allow one kernel launch at a 
given time. Collaborative kernels organize themselves 
successively and run independently on a GPU. 
However, multiple kernels can be launched to execute 
collaterally as shown in Figure 3. Furthermore, new 
features allow altering an execution configuration on 
fly without the interference of a CPU and therefore, 
facilitate dynamic parallelism.

For instance, consider the example of a simple 
squaring function. To efficiently execute this on GPU, 
we assign each thread a single item to square it. All 
the threads compute their respective multiplications 
required for squaring concurrently in SIMD fashion. 
Once all the multiplications are finished, the threads 
are synchronized before sending results back to the 
CPU for display purposes. The notion of assigning 
each multiplication to a single thread is similar to loop 
unrolling, because it’s a loop that computes all the 

multiplications involved in the squaring function on 
the CPU, and here we break the overall computation 
into concurrent operations by distributing it among 
multiple threads to execute in parallel instead. Hence, 
all the threads crunch same piece of code at the same 
time.

Figure 3: Multiple kernel launches on the GPU. Different 
combination of the # of thread blocks and # of blocks per grid can be 
used for multiple kernels.

Table 1 illustrates this example by showing the 
sequential loop on the CPU, and its CUDA version 
on the right hand side. The square function array takes 
an array of length N; and multiplies them individually 
to find the squares of all the data items in the array.

Table 1: CPU sequential code vs. GPU code for 
implementing the dot product.

However, its parallel counterpart in CUDA spawn 
threads equal to the number of multiplications i.e. N, 
such that each thread corresponds to a particular item 
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of the input array. Note that, millions of threads can 
be launched on current GPU architecture. However, 
programmers can constraint the number of threads 
to N for smaller value of N (few hundreds). Also, this 
number is limited by the usage of underlying hardware 
resources discussed in the GPU architecture section. 
To get the corresponding position of the elements in 
the array; the number of threads is multiplied with the 
block index, and added to the local index of the thread 
within the block. Let’s suppose the size of each array 
is N = 4096 items, and the # (blocks) = 16, and the 
# threads/block, block Dim.x is 256. The block Idx.x 
keeps track of the individual block ids, while threads 
Idx.x is the index of the individual thread within the 
block. To access 1000th item in the input arrays, the 
thread index becomes 3*256 + 232 according to the 
equation of tid shown in Table 1; where block Idx.x is 
3; block Dim.x is 256 and thread Idx.x is 232; equals 
to 1000. 

GPU architecture
The scalable streaming multiprocessors (SMs) hosting 
at least eight streaming processors (SPs) also called 
cores constitutes the underlying hardware of a GPU, 
as highlighted in Figure 3. The warp which is batch 
of 32 threads that can run concurrently is scheduled 
to execute on SMs, in SIMD fashion. However, 
scheduling of warps on SMs is not exposed to the 
programmer. CUDA schedules multiple blocks to 
run concurrently on same SM. The space of shared 
memory and aggregate of registers determines the 
maximum number of concurrent blocks that can be 
scheduled on an SM instantaneously. The scheduler 
makes sure that the whole set of threads in a block 
gain access to the required resources before scheduling 
it on an SM. The blocks executing on an SM at any 
instant are referred as active blocks. 

The shared memory is implemented as an SRAM 
with an SM, and has very low latency, almost as 
registers. However, global memory comes as an 
off-chip DRAM and has high latency as compared 
to shared memory. Additionally, GPU has read-
only memories: constant and texture memory as 
an off-chip accessible by all the threads in a kernel 
launch. Constant memory is used for storing kernel 
parameters in newer architectures such as Fermi. 
Texture memory offers different addressing modes 
and can be used for 2-D pre-fetching for 2D texture 
memory etc. 

Impact of GPUS in crucial biomedical applications
GPUs have been an effective solution for parallelizing 
the compute-intensive jobs in biomedical applications. 
The example applications are discussed below.

Demand of acceleratoin in mass spectrometry 
analysis: An analytical technique that measures the 
expression analysis of proteins from charge to mass 
ratio of ions constitutes mass spectroscopy (MS). 
The technique basically provides information about 
the molecular formula and weight and the relative 
proportion of hydrogen, oxygen and carbon in a target 
compound. Such approach has several applications in 
medical diagnostics to differentiate between the sick 
and healthy, biomedical engineering, and therapy. MS 
further helps in unveiling the mass, structure, and 
composition of the molecules under study ranging 
from pure samples to much complicated mixtures e.g., 
peptides which are digested proteins. Furthermore, 
the technique helps in decision-making such as 
finding the presence of a disease. The ionization 
and acceleration of peptides within an MS helps in 
determining the inherit fingerprint by analyzing the 
intensity against mass. 

The mass to the charge ratio, y-axis that portray the 
intensity along with the z-axis as additional parameters 
produce the output as 3D contours for further 
analysis. The problem with MS is that it generates 
larger streams of data and can quickly overflow 
hundreds of gigabytes. GPU-based implementation 
provides a faster approach for automating the feature 
detection using adaptive wavelet transform (Hussong 
et al., 2009). The ideal case for the results is higher 
precision without sacrificing the performance.

Convolution is naturally a parallel operation and 
therefore, enables the algorithm to map well enough 
to the underlying parallel architecture. The number 
of threads that is proportional to the data points 
performs convolution concurrently in CUDA. The 
algorithm intelligently splits the map (an input 
of scan points) such that each piece contains 512 
points. Part of the reason is that the conventional 
architectures support up to a maximum number of 
512 threads/block. An individual thread ascertains 
the convolution operation on a corresponding 
itemwith respect to the neighborhood items. The goal 
is to load additional points into the shared memory 
for facilitating convolution of the intensities that 
are in the neighborhood of the assigned point per 
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thread. It is pertinent to mention that the points in 
the neighborhood fetched for a specific convolution 
of data point cannot be computed in prior. This 
difficulty in computing mainly arises due to the 
irregular spacing in an MS data. In safe mode, a 
maximum quantity of the memory is dedicated to 
load the whole associated points in the neighborhood 
that is based on the maximum mass.

The author has implemented two GPU-based 
implementations with varying compute and memory 
capabilities. The counter implementation on CPU 
uses 8 cores tuned at 2.3 GHz with 16GB main 
memory. The simple implementation on GPU loads 
spectrum in texture memory and shows significant 
speedup. An implementation uses an on chip shared 
memory for storing and computing spectrum data 
further accelerates the computation. Such approach 
even with the lack of approximations is faster 
without sacrificing better quality results, resulting 
in 200X speedup using real-world protein data in 
contrast to the analogous code on CPU. Furthermore, 
implementation on a contemporary device produces 
an acceleration up to 10X faster. These analyses 
demonstrate that analyzing larger scale proteomics 
entails incorporating advanced GPUs. 

Recent research such as GPU-DAEMON illustrates 
a speed of 386 times over CPU-version and an 
acceleration of up to 50 times over previous GPU 
version. GPU-DAEMON aims at achieving 
maximum occupancy on GPU hardware, an optimized 
algorithm, an efficient use of memory. Combined 
these approaches result in an improved performance. 
Furthermore, three cases studies stemming from 
GPU-DAMEON in the form of GPU-ArraySort, 
G-MSR and GPU-PCC has been presented.

Accelerated medical imaging
Magnetic Resonance Imaging (MRI) provides 
quantitative and definitive insights for medical 
imaging, especially in detecting tumors in human 
brain and monitoring the functioning of heartbeats. 
MRI has the ability to study cancer and produces 
better images in order to contrast between the 
different soft tissues of the body as compared to the 
CT–Computed Tomography or radiographs. The data 
acquired from clinical trials need to reconstructed 
for analyzing disease progression with minimal 
losses in an image quality. The automation of MRI 
imaging is not so straightforward mainly because of 

the imaging artifacts, higher frequency noise, and an 
extended acquisition time. Furthermore, the scanning 
trajectory that can be either Cartesian or non-
Cartesian has a profound effect on the reconstructed 
radiographs quality. The scanned trajectory can be 
either cartesian or non-cartesian. Nonetheless, a non-
Cartesian trajectory is preferable in MRI because of 
the resiliency it offers to noise. Such reconstruction 
computation is trivial; however, it does not inculcate 
the anatomical information (Halder et al., 2008). The 
anatomical information used for an optimal image 
reconstruction (Fessler et al., 2005; Pruessmann et 
al., 2001; Sutton and Fessler, 2003) helps in reducing 
the noise and achieve a higher SNR per scan while 
does not affect the resolution of the target image 
features. Sophisticated reconstruction algorithms 
devised for scalable problems in clinical trials and 
disease progression can be accelerated on GPUs for 
a real time solution. A typical non-uniform scan 
in a reconstruction technique consumes merely 2 
minor even less on a GPU-based implementation 
as compared to its counter CPU code that takes 
approximately 23 minutes as captured by Stone et al. 
(Stone et al., 2008). These advanced reconstruction 
algorithms are faster as well as more precise i.e. 
the GPU produces 12% error as compared to the 
analogous CPU code that results in an error of 42 %. 
The implementation of reconstruction algorithm on 
GPU varies from a naive implementation with zero 
optimizations to a little optimized version and even 
well-tuned implementations that incorporates the 
best match of loop unrolling by a factor of 5, tiling 
2048 scan points in an individual thread and 320 the 
number of threads/block for the target application. 

Note that these parameters vary from application 
to application depending upon data-parallel nature 
of the application. In the given case, such tuning 
tremendously reduces the aggregate of accesses to 
the global memory, which further mitigates the off-
chip memory bandwidth and therefore, results in an 
improved performance. More specifically, the runtime 
reduces to 59 seconds. In comparison, running well-
tuned version on a multi-GPU setup results in an 
accumulated runtime of 18 sec. It is pertinent to 
mention that a floating-point computation of single 
precision along with trigonometric operations that 
are approximated provides an improved performance 
and less error in the real image. However; there is 
a better chance to degrade the output. Enhancing 
the standard of the acquired images along with 
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an accelerated implementation will increase the 
throughput of the scanner and thus will increase the 
patient comfort. Interestingly, a speed up from 2X 
to 9X has been attained for the said reconstruction 
algorithms (von Rymon-Lipinski and Keeve, 2004; 
Sumanaweera and Liu, 2005; Schiwietz et al., 
2006). IBM technology group have used Cell BE to 
accelerate MRI reconstruction up to 17 times.

Recent efforts show an acceleration ranging from 
28.81 – 89.12 with an increasing size of images 
from 128 x 128 – 1024 x 1024 without sacrificing 
the performance pertinent to the segmentation. 
Achieving an optimal performance for automated 
image registration algorithms is crucial to MRIs. The 
automated image registration algorithm computes 
an optimal mapping for the source image against 
the reference image through similarity metrics and 
transformations. These metrics are further optimized 
in order to compute an optimal transformation 
based on the similarity metrics. Unfortunately, these 
registrations involve outstanding iterations and 
therefore, are deliberate even on a typical workstation. 
Such behavior obstructs the post-processing of 
medical images for useful decision-making. GPU-
based MRIs approaching to 14-fold acceleration 
for image registration techniques has been reported 
(Huang et al., 2011).
 
GPUS in electrocardiography (ECG)
ECG is a gold standard for monitoring and recording 
the electrical activity pertaining to a human heart. It 
provides little discomfort to the patient and is more 
ubiquitous than MRI and CT scans. Furthermore, the 
technique captures the activity of heart in 3D / 4D 
views. The raw data acquired from these applications is 
higher in volume and pose challenge when rendering 
especially the images with higher dimension as those 
are computationally expensive. 

GPUs underlying parallel architecture can be exploited 
to render images of higher dimensions from the 
sampled ultrasound data and attempts to approaches 
to the speed that is required by a human heart 
(GPU Gems). GPUs have shown 13.03 times faster 
computations to its sequential counter code (Shen 
et al., 2009). However, the demand for an increasing 
amount of data needed in GPU computation hampers 
the additional acceleration. The sophisticated GPU 
setup can cause a revamped performance due to an 
increased number of cores, larger spaces of memory, 

and an increased bandwidth of memory that bridges 
between the device and CPU.

In a smartphone-based approach for a quicker and 
easier detection of ECG, a speed of about 6x is 
achieved on average, while a maximum speed up 
of 23x is reported, especially in artifact removal. 
The study utilizes a qualcomm based processor i.e., 
Snapdragon 820 coupled with a GPU of Adreno 
530 with a memory of 6 GB. Such processor hosts 
two cores at 2.15 GHz, while the GPU supports 256 
arithmetic and logic units that are clocked at 624 
MHz optimized for parallel computation.

Ray casting is another technique that is frequently 
used for rendering the volume. This technique aims 
to project 2D data into a 3D plan through tracing out 
the rays from a viewpoint into a viewing volume. A 
volume rendering framework for ultrasound datasets 
that incorporates GPU-based volume rendering has 
been developed (Lim et al., 2009).

Automated analysis of multi-electrode neuron action 
potentials
EEG, fMRI, and MEAs are techniques aimed 
for recording and analysis of the neuronal activity 
of human brains, but the problem with these 
approaches is that they do not allow to record single 
neuron activity. To record a neuronal activity up 
to the granularity of a single neuron, a technique 
called single-unit recording is used. Single-unit 
recording measures electrophysiological activities of 
a single neuron through microelectrode system. This 
allows measuring of the intra- and extra-cellular 
phenomenon of a human brain, the action potentials. 
The measured information can be applied to Brain 
Machine Interface (BMI) to record the brain activity 
(action potential) and decode it into the intended 
response, which can control the movement of an 
external device e.g., prosthetic limb in assistive 
technologies, or computer cursor. Cao et al. (2010) 
has focused on the use of data mining algorithms 
towards the neuronal event streams stemming from 
the MEA to analyze the human brain. 

The interesting firing patterns of the spikes in 
neuron action potential gives cognizance into the 
underlying cellular level activity of a neuronal tissue. 
The challenge in analyzing such useful insights are 
the sizable event streams accumulated from an 
MEA and a classical 64 channel MEA can simply 
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end up in a couple of million pulses of data merely 
in a few seconds. Furthermore, these experiments 
can keep running for months resulting in hundreds 
of millions of neuronal action potentials. Analyzing 
these larger datasets entails high-end data storage 
and computing resources. Not to mention, extracting 
useful patterns in the mentioned data in real-time 
requires dimensionality reduction and intelligent 
classification techniques. 

The goal is to concurrently compute the frequency 
episodes between non-overlapped occurrences in the 
event streams. One thread per Occurrence fulfills 
the requirement of mining lesser episodes, while 
the two-pass elimination counts the larger quantity 
of episodes. The problem with the former approach 
is that it utilizes GPU much below its potential due 
to the dependencies in the data and the accompanied 
branch divergence that serializes the code and 
hence making it harder to be parallelized. The later 
approach assigns one episode per thread. If there 
are many episodes, GPU can be utilized to its full. 
Based on the query of length 5, which needs 97 byte 
of registers and 220 bytes of shared memory, merely 
32 threads can be schedule on a GPU, which hosts 
only 16KB of registers and the shared memory. The 
elimination of unsupported episodes followed by the 
complex state machine (two-pass elimination) to 
mine the supported episodes, not only improve the 
performance but also results in less time complexity as 
compared to the overall complex state-machine based 
algorithm (hybrid algorithm). Since local memory can 
be used as alternate to registers and is stored in global 
memory, which is accessed frequently and hence, 
incurs larger latency. This also comes from the fact 
that hybrid approach uses 80 bytes of local memory 
and 17 registers, in contrast to the elimination 
algorithm, which needs 13 registers without any local 
memory. Moreover, for greater number of episodes; 
the number of memory accesses are least by the two-
pass elimination technique over the hybrid approach. 
Finally, the algorithms are evaluated on an NVIDIA 
GTX280 GPU.

Another study that stresses a real-time analysis include 
the processing of large neuronal data emerging from 
assistive technologies (Romero-Ortega et al., 2009). 
The duty cycle needed to capture the activity of 
neuronal action potential ranges from a section to a 
couple of milliseconds (Lewicki, 1998). This requires a 
sampling rate of fewer kHz. Considering a resolution 

of 1 byte that can lead to 256 distinct voltage levels 
for an individual electrode, the system must have the 
ability of measuring at least at 1 million Bytes/sec. 
The necessity for adapting to higher rates of potentials 
can easily overflow fewer GB per second due to the 
agglomerated rates. The conventional techniques that 
encompass fewer electrodes trust on pushing raw data 
in storage devices for batch processing, which costs 
longer turnabout pauses from the actual collection 
of data to the excitation of neurons for generating 
important electrical stimulants. Such longer delays 
are unacceptable for assistive technologies. To this 
end, we need high-performance GPUs for real time 
neuronal action potentials.

Along those lines, a recent study uses a GPU-revamped 
simulator based on neural networks approach to 
simulate a human brain with a developed tool 
Brain2GeNN. This study demonstrates a maximum 
speed up of more than 200 fold compared to a 
standalone CPU core, while simulating one million 
neurons based on Hodgkin-Huxley (Stimberg, 2018). 
For other models, GeNN shows differing speedups.

Conclusions and Recommendations

The speedup achieved in different applications 
with the use of GPUs: 200x over real data-sets in 
mass spectrometry; making MRI reconstruction 
algorithms up to 9X faster; and a speedup of more 
than twice for ECG calculations; suggests that 
inherent parallelism in such biomedical applications 
matches the massive parallelism of GPU devices 
and provides naturally high-performance computing 
platforms to compute results for such applications in 
real-time for decision making. The speedup achieved 
with GPU in pore application is fascinating. Massive 
loop-level parallelism has the potential to harness full 
computational power of GPUs. The more inherent 
parallelism an application has, the more acceleration it 
gets with GPUs. Unfortunately, the branch divergence 
and data dependency in code result in de-acceleration 
on GPUs; as such behavior makes the code sequential 
instead. This ideally suggests running conditional 
and control code on CPUs and off-loading the data-
parallel and compute-intensive jobs to GPUs. 

The GPUs are promising for the biomedical 
applications but offers several challenges. The 
programming effort required to learn CUDA-style 
coding itself poses a challenge. Furthermore, the 
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application development involves learning usage of 
different types of memories on GPU, and the I/O 
communication involved between the CPU and 
GPU. One key challenge is the limited memory 
and I/O resources of GPU. The cost of off-loading 
larger data-inputs on GPU is non-trivial, and in 
some applications frequent memory transfers incurs 
significant pressure on GPU memory, and can choke 
the memory bandwidth between CPU and GPU. One 
way to mitigate such memory pressure is to divide 
the data into smaller chunks, and then stage the data 
to the GPU memory for processing. This data chunk 
shouldn’t be too small to increase the frequency of data 
transfers, leading to less occupancy on GPU cores; and 
also, shouldn’t be too large to increase the time per 
transfer and making the GPU processing cores idle 
most of the time. This need benchmarking on different 
size of data chunks to see the trade-offs between the 
data-transfer (communication) time and the kernel 
execution (computation) time on GPU and selecting 
the best match of the data chunk size for the target 
application that should be staged to the GPU. The 
need of transferring data to GPU comes from the fact 
that the input data is huge in biomedical applications 
and the GPU has limited on-chip memory and also, 
launching kernels on GPU with different execution 
configurations can’t be accomplished without the 
intervention of CPU. However, the latter case has 
been addressed in newly Kepler-based GPUs by 
enabling dynamic parallelism where programmer can 
change the execution configuration of kernel in flight. 
This can help programmer porting more and more 
code to GPU without using general-purpose CPU to 
launch kernels onto GPU. Nonetheless, applications 
with large data-sets (much greater than GPU on-chip 
memory size) involves multiple stream with varying 
rates will happen by interleaving those streams into 
chunks and transferring these onto GPU for the 
required computations faithfully.

To cope with this issue given the huge amount of 
data of biomedical applications; sophisticated I/O 
techniques such as multiple buffering and pre-fetching 
can help which can overlap the data transfer from 
CPU to GPU with the computation on the GPU, and 
improve the performance by reducing the execution 
stalls (Venkatesan et al., 2010). This will not only keep 
the GPU busy, but will also keep on transferring the 
data in parallel to the computation on GPU such 
that chunk N-1 is on fly onto GPU, chunk N-2 is 
on its way from CPU to GPU and so on enabling 

double buffering. However, in Fermi-based setup, 
chunk N is on its way back to the CPU from GPU – 
empowering triple buffering. Such buffering can help 
in pipelining the process and hence, improving the 
overall throughput of the system.

From this survey, we conclude that the due to the 
massively parallel architecture of GPUs and the 
recent advances Kepler-based GPUs and even newer 
GPUs that will come in future will better leverage the 
biomedical algorithms along with the increase in the 
algorithmic complexity towards the increasing data 
demands of biomedical applications. This enables 
GPUs potentially viable in biomedical community to 
achieve the goal of real-time diagnosis and decision-
making in clinical setup, and GPUs for bioinformatics 
will remain a vibrant research area in the future.

Novelty Statement

This is a review paper that discusses the trade-offs 
involved in the use of Graphics Processing Units 
(GPUs) for accelerating various steps in biomedical 
applications, especially those entailing bio-imaging. 
Such review work will help future researchers to 
leverage GPU intelligently and efficiently in order to 
find useful insights for disease diagnosis.
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