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Introduction

Antimicrobial resistance poses a serious threat to hu-
man and animal health worldwide (Berendonk et al., 

2015). The growing emergence of resistance in pathogenic 
bacteria constitutes a direct threat to humans and animals. 
However, there is mounting evidence that commensal and 

environmental bacteria are reservoirs of resistance deter-
minants that can be transferred to pathogenic bacteria 
( Juricova et al., 2021). Commensal Escherichia coli (E. coli), 
in particular, is widely recognized as an indicator for track-
ing antimicrobial resistance in monitoring programs, and 
serves as a model for studying the emergence of antimi-
crobial resistance in animals, for a wide range of bacteria 
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(Hesp et al., 2021). In addition, it reflects the risk for con-
sumers (Kaesbohrer et al., 2012). E. coli is a part of the nor-
mal microflora in poultry intestine. Nonetheless, certain 
strains could spread into various internal organs and cause 
a systemic fatal disease (colibacillosis) with great economic 
loss (Ibrahim et al., 2019). Furthermore, a recent report 
demonstrated that commensal E. coli isolates originating 
from broiler chickens can quickly transfer its antibiotic re-
sistance determinants to human intestinal microbes (Lam-
brecht et al., 2019). Antimicrobials are used in poultry to 
prevent or treat infectious diseases and to promote growth, 
and are mainly administered through food or water to the 
entire group (Mehdi et al., 2018). Quinolones (Qs) and 
fluoroquinolones (FQs) are synthetic antibiotics that have 
been used against many Gram-positive and Gram-neg-
ative bacteria in humans and animals (Ruiz, 2019). As a 
result of the use, high levels of FQs resistance emerged in 
E. coli in chickens (Ferreira et al., 2018; Mahmud et al., 
2018; Moawad et al., 2018; Pourhossein et al., 2020; Tem-
merman et al., 2020; Seo and Lee, 2021) and in humans 
as well (Kotb et al., 2019). Thus, FQs ended up designated 
as “Highest Priority Critically Important Antimicrobials” 
(WHO, 2019). Quinolones act by targeting bacterial DNA 
gyrase (topoisomerase II), and topoisomerase IV, derailing 
the process of bacterial DNA synthesis (Hooper and Jacoby, 
2016). While FQs resistance is mainly attributable to mu-
tations in gyrA and parC genes of the quinolone resistance 
determining region (QRDR), the increasing reporting of 
plasmid-mediated quinolone resistance (PMQR) has been 
causing concerns globally over its dissemination (Poirel et 
al., 2018). Moreover, acquisition of PMQR determinants 
may promote QRDR mutations, ending up with increased 
in the overall FQs resistance levels (Hooper and Jacoby, 
2015). The resistance determinants acquired on plasmids 
act by three different mechanisms; target protection (qnrA, 
qnrB qnrC, qnrD, qnrE, qnrS, and qnrVCl); antibiotic ef-
flux (QepA, OqxAB); and antibiotic modification (aac(6’)
Ib-cr) (Ruiz, 2019). Several  studies around the world have 
recently reported on quinolone resistance genes in com-
mensal E. coli (Ferreira et al., 2018; Mahmud et al., 2018; 
Pourhossein et al., 2020; Seo and Lee, 2021). Even though 
wet markets and live bird shops have been suspected to be 
a potential source of multi-drug resistant E. coli (Sarker et 
al., 2019; Effendi et al., 2021), and despite the flourishing 
poultry farming and live bird markets in Kafr El-Sheikh, 
an agricultural governorate in north Egypt, reporting on 
the subject is still scarce in region. Therefore, this study in-
vestigated the phenotypic and genotypic (PMQR) char-
acteristics of Qs and FQs resistance in commensal E. coli 
from apparently healthy broiler chickens from farms and 
live bird markets in Kafr El-Sheikh governorate, Egypt.

Material and methods

Ethical approval 
Sample collection was performed according to the guide-
lines of the Animal Health Research Institute, Egypt, and 
in accordance with all international guidelines for use of 
animals. 	

Samples collection
A total of 150 cloacal swabs were aseptically collected from 
apparently healthy broiler chickens from farms (81 sam-
ples of 20-25 day old) and live bird markets (69 samples of 
40-45 days old) distributed throughout different localities 
in Kafr El-Sheikh governorate, Egypt, in the period be-
tween October 2018 April, 2019. The samples were placed 
in buffered peptone water (BPW) (Lab M Limited, Lan-
cashire, UK) and transported to the laboratories of Animal 
Health Research Institute for further examinations.

Isolation and identification of E. coli from 
apparently healthy broiler chickens
The collected samples were incubated at 37°C for 24h for 
pre-enrichment (in BPW). By using sterile cotton-tipped 
swabs, enriched samples were then streaked onto MacCon-
key agar (Oxoid, Basingstoke, UK) and incubated at 37°C 
for 18 to 20 h. The suspected E. coli colonies (pink color) 
were streaked onto Eosin Methylene Blue agar (Merck, 
Germany). After overnight incubation at 37°C, typical E. 
coli colonies (a greenish metallic sheen with a dark center) 
were further identified according to their phenotypic cri-
teria, cultural characters and biochemical testing (Edwards 
and Ewing, 1986). Confirmed E. coli strains were stored at 
−80°C in tryptic soy broth (TSB) with 30% glycerol until 
further use. In total, 138 non-repetitive avian fecal E. coli 
isolates were confirmed and then used for antibiotic sus-
ceptibility testing. 

Antibiotic susceptibility testing of E. coli 
isolates from broiler chickens
Using disk diffusion method, as described by (Bauer et al., 
1966),  antibiotic  susceptibility of the 72 E. coli isolates was 
tested against seven different Qs and FQs; nalidixic acid 
(NA) 30 μg, ciprofloxacin (CIP) 5 μg, norfloxacin (NOR) 
10 μg, moxifloxacin (MO) 5μg, enrofloxacin (ENR) 5 
μg, levofloxacin (LEV) 5μg, and flumequine (UB) 30 μg 
(Thermo Scientific™ Oxoid, UK). The zones of inhibition 
were examined and recorded as sensitive, intermediate or 
resistant, according to according CLSI (2018) interpreta-
tive criteria. E. coli strain ATCC 25922 was used as control.

Molecular detection of PMQR Genes in E. coli 
isolates from broiler chickens
A total of 24 FQs-resistant E. coli isolates (highly resistant 
phenotypes, displaying resistance to at least 5 fluroquino
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Table 1: The primers used in the amplification of PMQR genes from E. coli isolated from apparently healthy broiler 
chickens.
Target Primer Sequence Annealing. Amplified 

product
Reference

qepA F: CGTGTTGCTGGAGTTCTTC 50˚C 
40 sec.

403 bp (Cattoir et al., 2008)
R: CTGCAGGTACTGCGTCATG

aac(6′)-Ib-cr F: CCCGCTTTCTCGTAGCA 52˚C 
30 sec.

113 bp (Lunn et al., 2010)
R: TTAGGCATCACTGCGTCTTC

	
qnrA	

F: GATAAAGTTTTTCAGCAAGAGG 57˚C 
40 sec.

543 bp (Broszat et al., 2014)
R: ATCCAGATCGGCAAAGGTTA

qnrB F: ATGACGCCATTACTGTATAA 53˚C 
40 sec.

562  bp (Yang and Yu, 2019)
R: GATCGCAATGTGTGAAGTTT

qnrS F: ATGGAAACCTACAATCATAC 48˚C 
40 sec.

491 bp (Vien et al., 2009)
R: AAAAACACCTCGACTTAAGT

Table 2: The prevalence of E. coli in the cloacal swabs from apparently healthy broiler chickens.
Origin of the samples Number of tested samples Positive samples

NO %
Broiler chicken farms 81 73 90.1
Live bird markets 69 65 94.2
Total 150 138 92

The percentage was calculated according to the corresponding number of samples.

Table 3:  Antibiogram profile of the E. coli isolates from cloacal swabs from apparently healthy broiler chickens.
Samples location  Age 

(day)
NO 
tested

Sensitivity 
pattern

NA UB CIP NOR ENR LEV MO

Broiler chicken farms  
36

R 29 27 20 15 24 10 13
20-25 I 3 2 11 5 8 15 10

S 4 7 5 16 4 11 13
Live bird markets  

36 
R 33    32 27 27 28 14 17

40-45 I 0 0 6 3 3 11 10
S 3 4 3 6 5 11 9

Total 72
R 62 59 47 42 52 24 30
I 3 2 17 8 11 26 20
S 7 11 8 22 9 22 22

R=Resistant,   I= Intermediate,   S=Sensitive,  NA=nalidixic acid, CIP=ciprofloxacin, 
NOR=norfloxacin, ENR=enrofloxacin, UB=flumequine, LEV=levofloxacin,  MO=Moxifloxacin 

Table 4: The prevalence of quinolone and fluroquinolone-resistant E. coli from apparently healthy broiler chickens. 
Name of quinolone antibiotic Number and percent  of resistant isolates

Broiler chicken farms Live bird markets Total
NO % NO % NO %

Nalidixic Acid 29 80.6 33 91.7 62 86.1
Flumequine 27 75 32 88.9 59 81.9
Ciprofloxacin 20 55.6 27 75 47 65.3
Norfloxacin 15 41.7 27 75 42 58.3
Enrofloxacin 24 66.7 28 77.8 52 72.2
Levofloxacin 10 27.8 14 38.9 24 33.3
Moxifloxacin 13 36.1 17 47.2 30 41.7
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Table 5: The prevalence of PMQR genes in 24 fluroquinolone-resistant E. coli isolates from apparently healthy broiler 
chickens. 
Samples location NO of 

Samples 
tested

Detected PMQR genes
qnrA qnrB qnrS aac (6 ′)-Ib-cr qepA
NO % NO % NO % NO % NO %

Broiler chicken farms 12 0 0 1 8.3 9 75 1 8.3 6 50
Live bird markets 12 0 0 3 25 11 91.7 0 0 7 58.3
Total 24 0 0 4 16.7 20 83.3 1 4.2 13 54.2

lone antibiotics), 12 isolates of broiler farms origin, and 12 
isolates of live bird markets origin,  were used. The DNA 
was extracted from these isolates using QIAamp DNA 
Mini Kit (QIAGEN, Germany) according to the man-
ufacturer’s instructions. Single PCR reactions were then 
used for amplification of each of PMQR gene (qnrA, qnrB, 
qnrS, qepA and aac(6′)-Ib-cr) using specific primers (Table 
1). Each PCR reaction was performed in a 25 μL reaction 
mixture containing 5 μL of template DNA, 12.5 μL of 
EmeraldAmp GT PCR Master Mix (TAKARA BIO 
INC.™, Japan), 1 μL of forward primer(20 pmol), 1 μL of 
reverse primer  (20 pmol) and 5.5 μL of PCR grade water. 
The primers sequences, annealing temperatures, and size 
of amplified product for the investigated genes are shown 
in Table 1. PCR products were resolved on 1% agarose gel 
with ethidium bromide dye and the gel was visualized under 
a UV transilluminator (Biometra Goettingen, Germany).

Results

The prevalence of E. coli among the examined 
samples
Out of 150 investigated cloacal swabs from apparently 
healthy broiler chickens, 138 (92%) were found positive 
for E. coli (Table 2), with slightly higher incidence in sam-
ples from live bird markets (94.2%) than those from farms 
(90.1%).

Phenotypic resistance of E. coli isolates to 
quinolones and fluoroquinolones
The resistance pattern of E. coli isolated from apparently 
healthy broiler chickens (Table 3, Table 4, and Figure 1) 
showed that 86.1% of isolates were resistant to at least one 
of the tested Qs or FQs antibiotics. The results revealed 
that 84.7% were resistant to FQs (one or more antibiotic 
other than nalidixic acid), and 29.2% were resistant to all 
tested Q and FQs. The highest resistance rates were ob-
served against first generation (86.1% for nalidixic acid, 
and 81.9% for flumequine). The rates of resistance to enro-
floxacin, ciprofloxacin, norfloxacin and moxifloxacin were 
72.2%, 65.3%, 58.3%, and 41.7% respectively. The lowest 
resistance rate was observed against levofloxacin (33.3%). 
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Figure 1: Prevalence of quinolone and fluoroquinolones 
resistance in E. coli from apparently healthy broiler 
chickens.

Figure 2: PCR amplification of the 491 bp fragment of 
qnrS gene from 8 E. coli isolates. P is control positive, N is 
control negative, and L is DNA ladder.

Figure 3: PCR amplification of the 403 bp fragment of 
qepA gene from 10 E. coli isolates. P is control positive, N 
is control negative, and L is DNA ladder.
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Figure 4: PCR amplification of the 562 bp fragment of 
qnrB gene from 8 E. coli isolates. P is control positive, N is 
control negative, and L is DNA ladder.

Figure 5: PCR amplification of the 113 bp fragment 
of aac(6′)-Ib-cr gene from 6 E. coli isolates. P is control 
positive, N is control negative, and L is DNA ladder.

Prevalence of PMQR genes
Out of 24 phenotypically-resistant isolates, 22 (91.7%) 
harbored at least one PMQR gene. The qnrS gene was 
detected in (20/24, 83.3%) of tested isolates, which was 
the most frequent gene, while qepA incidence was 54.2%. 
The qnrB gene was detected in (4/24, 16.7%) of resistant 
isolates. Only one isolate (4.2%) was found positive for 
aac(6′)-Ib-cr gene, while qnrA was not detected in any test-
ed isolate (Table 5, Figures 2, 3, 4, and 5).

Discussion

Even though some E. coli strains are pathogenic to chick-
ens and cause colibacillosis (Younis et al., 2017), most E. 
coli strains are still a part of the normal intestinal micro-
flora. However, the serious threat of these commensals lies 
in its role as a reservoir of resistance determinants, from 
which pathogenic bacteria could acquire resistance via 
horizontal gene transfer ( Juricova et al., 2021). 

In the present study, the overall prevalence of E. coli in clo-
acal swabs from apparently healthy broiler chickens was 
92% , which was close to results by Mohamed et al. (2014) 
(92.6%) and Ferreira et al. (2018) (90.5%). Higher recov-
ery rate (100%) was recorded by (Rahman et al., 2011), 
and slightly lower incidence was reported by Moawad et al. 
(2018) (87.5%), while much lower recovery rate reported 

by Hardiati et al. (2021) (55.6%). These differences may 
be attributable to the level of hygienic standards and hus-
bandry, mechanical vectors and biosecurity (Gompo et al., 
2019). Besides, host genetic factors (Berghof et al., 2019), 
and the detrimental impact of antibiotic use on intestinal 
E. coli could affect the results. Our findings showed higher 
occurrence of E. coli in samples from live bird markets than 
those from farms. This may be due to overcrowding during 
transportation, confining the birds in highly contaminat-
ed environment with birds of different species and origins, 
with receiving them on the same old litter which accumu-
lates the microbes, and, in addition, the bacteria circulating 
in the place from the intestinal content of the slaughtered 
birds. Moreover, the birds of older age may have more 
chance of contracting the microbe (Gompo et al., 2019).

For decades, quinolones and fluoroquinolones have been 
effectively used against many serious Gram-negative bac-
terial infections in humans and animals (Ruiz, 2019), in-
cluding colibacillosis in chickens (Vanni et al., 2014). Un-
der the selection pressure, high levels of FQ-resistant E. 
coli have been reported worldwide from poultry (Ferreira 
et al., 2018; Mahmud et al., 2018; Moawad et al., 2018; 
Pourhossein et al., 2020; Temmerman et al., 2020; Seo and 
Lee, 2021). In the present study, E. coli displayed high rates 
of resistance to most of tested Qs and FQs. Recent reports 
from Egypt supported our findings, recording high levels 
of FQs resistance in E. coli from broiler chickens (Awad 
et al., 2016; El-Shazly et al., 2017), food of animal origin 
(Abdelkarim et al., 2020) and from humans as well (Kotb 
et al., 2019), highlighting the widespread of FQs resistance 
in Egypt in different sectors. Our results did not come as 
a surprise, as almost all farms in Egypt have been report-
edly using antibiotics (Kimera et al., 2020). We observed 
highest resistance against first generation (86.1% for NA, 
and 81.9% for UB), which was consistent with some recent 
reports (Awad et al., 2016; Younis et al., 2017; Kim et al., 
2020; Pourhossein et al., 2020; Hardiati et al., 2021). How-
ever, lower resistance against first generation was recorded 
by Talavera-González et al. (2021). The resistance against 
second generation FQs; ENR, CIP, and NOR in the cur-
rent study (72.2%, 65.3%, and  58.3% respectively) was 
close to results from previous findings (Ammar et al., 2015; 
Agabou et al., 2016; Abo-Amer et al., 2018; Amer et al., 
2018; Kim et al., 2020; Effendi et al., 2021), while  higher 
rates were reported by El-Shazly et al. (2017), and lower 
rates were recorded by Khalaf et al. (2020). These variations 
in resistance rates may be attributed to the varied levels of 
Qs and FQs use in animal production in different regions 
(Mehdi et al., 2018; Roth et al., 2019), and anthropologi-
cal and socioeconomic factors (Collignon et al., 2018). To 
our knowledge moxifloxacin and levofloxacin are not in use 
in the veterinary sector in Egypt. Resistance rates against 
them in this study (41.7% and 33.3% respectively) could be 
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due to cross-resistance among antibiotics of the same class 
(FQs) and/or exchanging resistance determinants with mi-
crobes from working staff through horizontal gene transfer. 
Our findings revealed higher resistance rates to almost all 
tested Qs and FQs in live bird markets samples than their 
corresponding rates in farms. This may be due to the pos-
sible transfer of the circulating resistant microbes and/or 
their resistance genes between birds from different origins 
(Talavera-González et al., 2021) and between birds and 
human staff (Lambrecht et al., 2019) in highly contam-
inated environment with low hygienic standards, leading 
to dissemination of resistance to E. coli which has a great 
capacity to accumulate resistance genes through horizontal 
gene transfer (Poirel et al., 2018). Furthermore, drug-re-
sistant bacteria in animals and the environment proliferate 
as birds get older, due to the selective pressure of antibiotic 
use during the rearing period, leading to an increase in the 
overall resistance of bacteria (Han et al., 2020).

FQs resistance dissemination is mainly attributed to trans-
ferable mechanisms by mobile genetic elements which are 
usually expressed as PMQR (Ruiz, 2019). Even though 
PMQR genes cause reduction in Qs and FQs suscepti-
bility which does not reach the breakpoints, additive ef-
fect is observed by accumulation of two or more genes 
(Rodríguez-Martínez et al., 2016). Moreover, PMQR 
may promote the selection of high-level resistance strains 
with mutations on the chromosome (Liu et al., 2012). The 
present study showed high prevalence (91.7%) of PMQR 
genes among FQ-resistant E. coli isolates, which is close 
to reports by Ammar et al. (2015) (100%) Egypt. Lower 
prevalence, however, was recorded by (Ferreira et al., 2018) 
in Brazil (23%), (Kim et al., 2020) in Korea (15.2%), and 
(Mahmud et al. (2018) in Bangladesh (72.22%). The qnrS 
gene was the most frequent PMQR gene (83.3%), which 
is consistent with findings from previous studies (Ammar 
et al., 2015; Mahmud et al., 2018). In contrast, low qnrS 
prevalence was reported by Ferreira et al. (2018), Pourhos-
sein et al. (2020), Seo and Lee, (2021), Kim et al. (2020).

Our results revealed 54.2% occurrence of qepA, which is 
close to results by Pourhossein et al. (2020) (53.40%). In 
contrast, Agabou et al. (2016) and (Kim et al., 2020) did 
not detect the gene in any tested isolate. The qnrB was de-
tected in 16.7% of samples in the current study, which is 
higher than those reported by Agabou et al. (2016) (0%), 
Seo and Lee, (2021) (3.8%), and Kim et al. (2020) (0%) 
and lower than findings by Ferreira et al. (2018) (21.5%). 
The current study displayed low aac(6′)-Ib-cr occurrence 
(4.2%), which was close to previous findings (Seo and Lee, 
2021). However, a higher rate (22.2 %) was reported by 
Agabou et al. (2016), and lower rate were recorded by Fer-
reira et al. (2018) (0.5%).  The qnrA was not detected in 
any tested isolate in the current results, which is similar 
to previous findings (Agabou et al., 2016; Mahmud et al,, 

2018). In contrast, the gene was detected by Pourhossein 
et al. (2020) (15.5%), Seo and Lee (2021) (6.6%) and Kim 
et al. (2020) (12.7%).

The differences in the occurrence of PMQR genes are of-
ten attributed to variations in the levels of Qs and FQs 
use in each region and the period of time. However, the 
levels of hygienic standards and biosecurity may affect the 
results,  as there’s evidence that even farms that do not use 
FQs are still at risk of acquisition of resistance determi-
nants through contamination of production system prem-
ises with FQ-resistant E. coli from other sources (Taylor et 
al., 2016). Besides, there’s evidence that the older the birds 
get, the more resistance determinants they  tend to accu-
mulate (Han et al., 2020).

The absence or low prevalence of PMQR in some of the 
tested isolates, despite displaying high phenotypic resist-
ance, could be attributed to chromosomal mutation, which 
is the primary mechanism for FQs resistance (Temmer-
man et al., 2020).

Conclusion

In conclusion, the high prevalence of FQs resistance in E. 
coli from broiler chickens in Egypt, with phenotypes of high 
resistance to multiple FQs antibiotics, along with the high 
occurrence of transferable FQs resistance determinants 
(PMQR genes), in our study, highlight the need of moni-
toring FQs use in poultry and routine screening for these 
genetic determinants in the sector. Besides, the increasing 
relevance of broiler chickens as a meat source facilitates the 
repeated exposure of the public to FQ-resistant E. coli in 
live birds or their contaminated meat products, which, in 
turn, enhances the transfer of FQs resistance determinants 
to human pathogens. Therefore, cooperation between vet-
erinary, human health and environmental research institu-
tions is highly recommended for better understanding of 
the epidemiology of FQs resistance emergence and dis-
semination, and for effective control plans.  
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