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INTRODUCTION

Ovarian primordial follicles’ growth to the preovulato-
ry follicles is dependent on multiple intra-follicular 

and extra-follicular factors including stage-specific growth 
as growth and differentiation factor-9 (GDF-9) or basic 
fibroblast growth factor (bFGF) (Tang et al., 2012) and 
hormonal factors (Baerwald and Pierson, 2020; O’Con-
nell and Pepling, 2021). Ovarian follicle development 
occurs during prenatal and postnatal periods through in-
itial and cyclic recruitments (Campbell et al., 1995; 2003). 
Initial  recruitment characterizes dormant primordial fol-

licles’ recruitment continuously to the growing follicles’ 
pool whereas cyclic recruitment characterizes antral folli-
cles’ recruitment per estrous cycle (Figure 1; Mohammed, 
2006). At the onset of each estrous cycle, there is a group 
of early antral follicles developed to one or more ovulato-
ry follicle(s) continuously through follicles’ selection and 
dominance. Recent interest has grown in the use of aspi-
rated oocytes from antral ovarian follicles of live animals 
or  slaughter-house ovaries for embryo production in vitro 
(Figure 2; Mohammed, 2006) (Mohammed, 2006; Mo-
hammed, 2008; Mohammed, 2014a; Mohammed, 2014b; 
Mohammed et al.,  2019; Ferré et al., 2020; Tian et al., 
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2021), which could be used for different purposes.

Figure 1: Ovarian follicle structures in mice; pre-antral 
follicles (A), antral follicles (B), preovulatory follicles (C), 
corpora lutea (D) and oocytes inside the follicles (E).

Figure 2: Aspiration of oocytes from follicles (A), antral 
follicle (B), the collected cumulus-enclosed germinal 
vesicle oocytes (C) stripped-off cumulus cells from the 
cumulus-enclosed germinal vesicle oocytes (D) in mice.

Follicle stimulating hormone (FSH), equine chorionic 
gonadotropin (eCG), luteinizing hormone (LH) and hu-
man chronic gonadotropin (hCG) were used for regulating 
ovarian follicle growth and ovulation in vivo (Mohammed 
et al., 2005; Mohammed et al., 2012a; Mohammed et al., 
2012b; Mohammed et al., 2019; Koloda et al., 2022). In 
addition, culture conditions including gases, culture me-
dia and additives to culture media were used in vitro for 
regulating ovarian follicles’ growth and development and 
oocytes’ maturation (Mohammed et al., 2005; Moham-
med et al., 2020; Salhab et al., 2011; Bahrami and Cottee, 
2022). Collectively, the embryos’ developmental compe-
tence resulting from oocytes in vivo matured is higher than 
those resulting from oocytes in vitro matured, reflecting 
the inefficiency of maturation culture conditions. Because 
of the significance of oocyte maturation stage on further 
embryonic development, this review aims to discuss the 
knowledge of oocyte maturation and its effect on further 
development of embryos in vivo and in vitro in addition to 
the meiotic maturation and development of reconstructed 
GV cytoplasts.

Growing and Fully-Grown Germinal Vesicle 
Oocytes
Nuclei of germinal vesicle oocytes are stopped in the diplo-
tene of 1st meiotic prophase stages (Zhang, 2018; Llano et 
al., 2022; Mohammed et al., 2022). Germinal vesicle oo-
cytes are in a long G2 stage because the last DNA replica-
tion round occurred at the 12th to 13th days of fetal stage in 
mice (Lima-de-Faria and Borum, 1962). Germinal vesicle 
oocyte must grow and develop to be able to undergo mei-
otic maturation. 

A complex bidirectional attachment between the enclosing 
cumulus cells and germ cell occurs during oocyte growth 
and differentiation (Eppig, 1991; Eppig, 2001; Doherty 
et al., 2022). Oocyte within primordial follicle stage is 
stopped at prophase of 1st meiotic stages and enclosed by 
a single layer-squamous cells. Follicles’ growth and their 
containing oocytes are regulated through paracrine factors 
secreted from both the surrounding cells and germ cell of 
juvenelle ovary (Eppig et al., 1997). Formation of antral 
follicles in mice occurs after birth approximately at day 
14th. Only a small proportion of oocytes at day 14th of age 
is competent to resume meiosis. At day 22nd after birth, oo-
cytes aspirated from the large antral follicles have acquired 
the ability of meiotic maturation and pre-implantation 
embryonic development (Eppig and Schroeder, 1989). 

During oocyte growth, meiotic competence is acquired 
progressively in mice (Eppig et al., 1994; Němcová et al., 
2019; Caballero et al., 2020) and necessitates an accumu-
lation of cell cycle regulatory molecules including p34cdc2 
and cyclin B (Polanski et al., 1998; Viveiros and De La 
Fuente, 2019). In addition, meiotic resumption is also as-
sociated with further translational and post translational 
modification of mitotic kinases (Mitra and Schultz, 1996; 
de Vantery et al., 1997). The growing oocyte undergoes dy-
namic changes in chromatin and microtubule configura-
tions (Mattson and Albertini, 1990). The nuclear morphol-
ogy undergoes dynamic modification from a decondensed 
chromatin configuration (not surrounded nucleolus; NSN) 
to a condensed chromatin around the nucleolus (surround-
ed nucleolus; SN) (Wickramasinghe et al., 1991). Both SN 
and NSN chromatin configurations are found in the ful-
ly grown germinal vesicle oocytes (Zuccotti et al., 1995). 
Synthesis and storage of transcripts during oocytes’ growth 
are essential constructs in oocytes for further embryo de-
velopment before transcriptional repression takes place at 
germinal vesicle stage. 

Gonadotropins stimulation to mature females resulted 
in increase of oocytes with the SN configuration (Boun-
iol-Baly et al., 1999). Gonadotropin stimulation in vitro 
increased the proportion of SN oocytes that have compact 
enclosed-cumulus cells whereas those oocytes with loosely 
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or denuded cumulus cells upon stimulation have a similar 
proportion of NSN and SN configurations (De La Fuente 
and Eppig, 2001).

Oocyte communication with surrounding cumulus cells 
is probably essential for both oocyte growth and acqui-
sition of meiotic competency (Eppig et al., 1997). How-
ever, both p34cdc2 and cyclin B components accumulate in 
cumulus-enclosed and denuded germinal vesicle oocytes 
(Chesnel and Eppig, 1995). In addition, neither oocyte 
growth nor oocyte competence to undergo germinal ves-
icle breakdown (GVBD) occurs at the same rate in cu-
mulus-enclosed and denuded germinal vesicle oocytes. 
This suggests that meiotic competence is regulated by an 
oocyte-intrinsic program and granulosa cells (Chesnel and 
Eppig, 1995). 

Meiotic Maturation of Germinal Vesicle 
Oocytes 
Meiosis occurs in mammalian germ cell up to the diplo-
tene stage during the fetal period. Germinal vesicle oocyte 
remains blocked at the diplotene stage of the 1st meiotic di-
vision in growing and dominant ovarian follicles. The ger-
minal vesicle oocytes resume meiosis after removing from 
the antral follicles or LH surge (Pincus and Enzmann, 
1935; Dieleman et al., 1983). Meiosis resumption in vivo is 
initiated by LH surge and occurs only in fully-grown ger-
minal vesicle oocyte of pre-ovulatory follicle. The oocyte is 
surrounded before LH surge by layers of compact cumu-
lus-enclosed cells, numerous projections of cells penetrate 
the zona pellucida and end on the oocyte oolemma with 
gap junctions. Disruption of these junctions occurs shortly 
after the LH hormone surge. Between the period of LH 
surge and ovulation, the fully grown germinal vesicle oo-
cyte of pre-ovulatory follicle undergoes several changes 
in its GV nucleus and cytoplast known as oocyte matura-
tion. The first sign of resumption of meiotic maturation is 
GVBD, which occurred approximately 2h of starting mat-
uration in mouse oocytes  (Gao et al., 2002; Mohammed 
et al., 2008; Mohammed et al., 2010; Mohammed et al., 
2019; Mohammed and Farghaly, 2018), and thereafter the 
chromosomes condense, microtubules pull the chromo-
somes to form the metaphase I (MI) plate. The 2nd meiotic 
division occurs immediately without chromosome replica-
tion and the oocyte reaches the MII stage. The oocytes re-
main arrested at the MII stage until fertilization occur and 
the oocyte complete the second meiotic division.

Cytoplasmic maturation involves transformations that 
prepare oocyte to support fertilization and development 
of resulting embryo. Both nuclear and cytoplasmic mat-
uration are needed for subsequent embryo cleavages and 
development (Chang et al., 2005). Cytoplasmic and nu-
clear maturation are required after fertilization to block 

polyspermy, to decondense fertilized spermatozoa and to 
form male and female pronuclei. The cytoplasmic matu-
ration changes include organelles redistribution and mi-
tochondrial migration to a perinuclear position. The nu-
clear maturation includes the changes from GV to MII 
stage. Furthermore, ultrastructural changes occurred in-
cluding changes in maturation-promoting factor (MPF), 
mitogen-activated protein kinase (MAP kinase) and cyclic 
adenosine monophosphate (cAMP) levels.

Maturation-Promoting Factor
Meiosis resumption in oocyte is regulated by MPF. MPF 
is composed of two subunits: p34cdc2 and cyclin B (Gautier 
et al., 1988). p34cdc2 is the catalytic component and cyclin 
B is the regulatory component. Activity of MPF appears 
shortly before GVBD, maintains at high level during MI 
stage, decreases prior to the 1st polar body extrusion, and 
rises again throughout the metaphase II stage (Campbell 
et al., 1996). 

Maturation-promoting factor seems to be the universal 
regulator of meiotic cell cycles (Wu et al., 1997). MPF 
phosphorylates number of proteins. MPF is believed to be 
responsible for GVBD, chromatin condensation and mi-
crotubular relocation (Verde et al., 1992). The oocytes then 
acquire the ability to form a MI plate and a spindle. The 
next step is progression to the second metaphase plate and 
1st polar body extrusion. The last meiotic event is arrest at 
the MII stage through cytostatic factor (CSF) (Masui and 
Markert, 1971). Inactivation of MPF by degradation of the 
cyclin component occur after sperm or parthenogenic acti-
vation to meiosis resume (Murray, 1992).

Mitogen-Activated Protein Kinases
Mitogen-activated protein kinases (MAPKs) are known 
to be involved in maturation processes of oocytes. Two 
isoforms of mitogen-activated protein kinases (MAPKs) 
in mammalian oocytes are presented including ERK1 and 
ERK2 (Sun et al., 1999). MAPKs appears activated after 
GVBD in mouse oocytes (Gavin et al., 1994). MAPKs 
activity during oocyte maturation is associated with cy-
toplasmic events including regulation of microtubule dy-
namics, spindle assembly and chromosomal condensation 
(Dedieu et al., 1996). 

Regulating growth and development of ovarian follicles in 
vivo and in vitro is considered the most important process 
for successful reproductive performance. The great impor-
tance extends to oocyte maturation where essential cyto-
plasmic and nuclear changes occurs for successful fertili-
zation and further developmental competence of embryos. 
The potential regulation of ovarian follicles and oocytes’ 
maturation in vitro and in vivo occur through nutrition 
and feed additives, hormonal supplementation, conditions 
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of  in vitro culture system including gases, culture media, 
additive to culture media including fetal calf serum, cu-
mulus cells and follicular fluid (FF), hormones and amino 
acids (Liu and Foote 1995; Mohammed et al., 2005; Ge 
et al., 2008; Lee et al., 2018). The importance of oocyte 
maturation confirmed through gene expression, fertiliza-
tion, timing of embryo cleavage, stage of embryo devel-
opment and offspring obtained after transfer to the surro-
gate mothers. The higher the oocyte maturation the higher 
embryo development and offspring obtained after transfer. 
Therefore, the success in oocyte maturation would be help-
ful in assisted reproductive techniques. Further studies are 
still required to make development of oocyte matured in 
vitro comparable to oocytes matured in vivo. 

Factors Affecting Oocyte Maturation 
Oocyte maturation is the most important step for pre- 
and post-implantation development of embryos (Mo-
hammed et al., 2005). The in vitro maturation of mouse 
oocyte needs approximately 15-17 hr. (Mohammed and 
Farghaly, 2018; Mohammed et al., 2008; Mohammed et 
al., 2010; Mohammed et al., 2019). The cytoplasmic and 
nuclear changes that occur during maturation of oocyte 
are important for successful fertilization and embryo de-
velopment (Mohammed, 2014a; Mohammed et al., 2014b; 
Mohammed and Farghaly, 2018; Mohammed et al., 2019a; 
Saini et al., 2022). Changes of maturation promoting and 
cytostatic factors in addition to two asymmetrical meiotic 
divisions resulting in a single oocyte and polar bodies for 
oocyte maturation.

The oocyte resumes meiotic division to the metaphase II 
(MII) stage in vivo after the LH hormone surge and in 
vitro when it removes from antral ovarian follicle and cul-
tured in favorable medium within 5.0% CO2 incubator 
(Grabarek et al., 2004; Mohammed 2006). Development 
of in vivo matured oocytes to embryos is higher than in 
vitro matured ones (Margalit et al., 2019; Sakaguchi and 
Nagano, 2020). This might be attributed to insufficient nu-
cleus and/or cytoplasmic maturity (Blondin et al., 1997).

Follicle size (Gordon, 2003; Patton et al., 2021), nutrition 
and feed additives (Cavalieri et al., 2018; Mohammed, 
2018; Mohammed, 2019; Mohammed and Al-Hozab, 
2020; Pournaghi et al., 2021; Gutiérrez-Añez et al., 2021; 
Saini et al., 2022), the media for maturation and their en-
richments (follicular fluid, bovine serum albumin, amino 
acids and hormones: Mohammed, 2006; Mohammed et al., 
2005; de Senna Costa et al., 2022),  incubator conditions 
(humidity, CO2 and oxygen concentrations) were found 
to affect oocyte maturation (Kang et al., 2021; Yousefian 
et al., 2021). 

Enrichment of maturation media with cumulus cells (Al 

Zeidi et al., 2022), growth factors and hormones (Bunel et 
al., 2020; Ko et al., 2021; Kumar et al., 2020; Wolff et al., 
2022), and other factors (Martínez-Quezada et al., 2021; 
Zabihi et al., 2021; Saini et al., 2022; Chelenga et al., 
2022) improves oocyte maturation and embryo develop-
ment thereafter (Gordon 2003; Baruffi et al., 2004; Som-
fai et al., 2012). In addition, super-stimulation of ovarian 
follicles via gonadotropin injections resulted in changes in 
small, medium, and large follicles according to the number 
and dose of gonadotropin injections and side of the ovary 
(Abdelnaby et al., 2021). FSH stimulates transcription and 
translation in ovarian granulosa cells, which are essential 
for female reproductive endocrine regulation (Dai et al., 
2021). Collectively, it could be concluded that the in vivo 
and in vitro conditions or factors effect on oocytes’ mat-
uration and their developmental competence to embryos 
and fetus. 

Germinal Vesicle Cytoplast For Creation 
“Artificial Gamete” 
Fully-grown germinal vesicle (GV) cytoplasts could be di-
vided through two consecutive meiotic divisions; first and 
second meiotic divisions if cultured in vitro. The hypoth-
esis that the GV cytoplasts are able to divide G0/G1 or 
G2/M nucleus through first and second meiotic divisions, 
respectively (Mohammed, 2006; Mohammed, 2014a; Mo-
hammed et al., 2014b; Mohammed et al., 2010; Moham-
med et al., 2019a; Mohammed et al., 2022; Al Zeidi et al., 
2022). Therefore, GV nuclei, male germ cells, embryonic 
and somatic cells at G0/G1 or G2/M stage might divide 
correctly in the GV cytoplasts through 1st and 2nd meiotic 
divisions, respectively to solve the problem of infertility as 
ageing-associated chromosome misalignment in meiosis 
of oocytes from  the aged mice or studying reprogramming 
of the introduced nuclei or nucleolar dysfunction (Fulka et 
al., 2004; Mohammed et al., 2022; Al Zeidi et al., 2022). 
In case of male infertility due to complete absence of the 
germline, GV cytoplast could be reconstructed with germ 
cell of male in order to create “artificial oocyte” containing 
the male haploid genome of the fused germ cell after in 
vitro maturation.

Unfortunately, the few trials so far concerning the GV cy-
toplast reconstructed with embryonic/somatic nuclei re-
sulted in abnormalities in maturation compared to normal 
maturation if the GV cytoplast reconstructed with GV 
nucleus (Figures 3, 4 & 5; Mohammed, 2006). One of the 
first studies in which GV oocytes were reconstructed with 
G0/G1 somatic nucleus performed by Kubelka and Moor 
et al. (1997) and Fulka et al. (2002). These studies failed 
to obtain 1st meiotic maturation of cell-oocyte complex. 
However, Polanski et al. (2005) reported meiotic matura-
tion of G0/G1 cumulus cells after their transfer into GV 
cytoplasts. Reports thereafter described the meiotic mat
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Figure 3: Germinal vesicle cytoplast used for germinal 
vesicle (A) embryonic (B) and somatic (C) nuclear transfer

Figure 4: Nuclear morphology at the expected MI stage 
of GV cytoplasts reconstructed with GV, embryonic and 
somatic nuclei. DNA was stained with Hoechst 33342. 
A) GV cytoplast reconstructed with GV nucleus. Various 
abnormal nuclear morphology was observed in manipulated 
GV cytoplast reconstructed with embryonic/somatic at 
the expected MI stage. These include: condensed, scattered 
chromosomes (B), partially condensed chromosomes (C),  
formation of micronuclei and «pycnotic» nuclei (D), and 
interphase-like nuclei (E).

Figure 5: Reconstructed GV oocytes with somatic cells 
after 17 hr. of maturation. Extruded large-sized PBs 
(A, B), DNA was stained with Hoechst 33342 where 
the oocyte had scattered chromosomes (C), DNA was 
stained haematoxyline where the oocyte had interphase-
like nucleus (D), the oocyte had partially condensed 
chromosomes (E) the oocyte had uneven distribution of  
chromatin (micronuclei)

uration of the enucleated GV oocytes after nuclear trans-
fer of G2/M stage embryonic or somatic (Grabarek et al., 
2004; Chang et al., 2004; Mohammed 2006; Mohammed 
et al., 2008; Mohammed et al., 2010; Mohammed et al., 
2019a; Mohammed et al., 2022) cell nuclei. The previous 
results demonstrated that meiotic maturation of GV cy-
toplasts reconstructed with embryonic/somatic cells (G0/
G1 or G2/M stage) were associated with abnormalities in 
earlier extrusion of 1st polar body, chromosomal alignment 
over spindle and condensation, and cytokinesis (Figures 
4 and 5; Mohammed 2006). Our trials to overcome and 
to explore such abnormalities have been reported (Mo-
hammed 2006; Mohammed et al., 2022; Al Zeidi et al., 
2022). Such previous trials improved the competence of 
enucleated GV cytoplast after embryonic/somatic nuclear 
transfer followed by maturation and activation/fertiliza-
tion. The proper pronuclei of the introduced embryonic/
somatic nucleus were formed in addition to the male pro-
nucleus in case of fertilization. The zygotes proceed de-
velopment to the blastocyst and hatching/hatched stage. 
This was occurred through a technique called “selective 
enucleation” of GV oocyte surrounding with cumulus cells. 
In this technique. the nucleolus and nuclear sap were left 
in the GV cytoplast in addition to cumulus attachment 
with zona pellucida. Such selective enucleation technique 
reached the reconstructed GV cytoplasts to the embryonic 
stages of blastocysts and hatched blastocysts compared to 
complete enucleation of denuded GV oocyte. The germi-
nal vesicle cytoplasts obtained with technique called “com-
plete enucleation” where the whole GV nucleus removed 
upon enucleation.

Over reconstruction with embryonic/somatic nuclei, the 
GV cytoplasts were blocked at one cell-stage embryos. 
Hence, further studies are still needed required for im-
provement embryos development, which obtained through 
GV cytoplast reconstructed with embryonic somatic nu-
clei in addition to obtaining offspring over embryo transfer 
to surrogate mothers. 

CONCLUSION 

Regulating ovarian follicles’ growth and development ei-
ther in vitro or in vivo is considered necessitate process for 
successful reproductive performance. The great importance 
extends to oocyte maturation where essential cytoplasmic 
and nuclear changes occurs for subsequent fertilization 
and development of the resulting embryos. The potential 
regulation of maturation of ovarian follicles and oocytes 
either in vitro or in vivo occurs through nutrition and feed 
additives, hormonal supplementation, conditions of in 
vitro culture system including gases, culture media, addi-
tive to culture media including fetal calf serum, cumulus 
cells and follicular fluid (FF), hormones and amino acids. 
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The importance of oocyte maturation confirmed through 
gene expression, fertilization, timing of embryo cleavage, 
stage of embryo development and offspring obtained after 
transfer to the surrogate mothers. The higher the oocyte 
maturation the higher embryo development and offspring 
obtained after transfer. Therefore, the success in oocyte 
maturation would be helpful in assisted reproductive tech-
niques. Further studies are still required to make develop-
ment of oocyte matured in vitro comparable to oocytes 
matured in vivo. 
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