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INTRODUCTION 

Consumption of high amounts of fructose in excess of 
advised nutritional needs can be responsible of several 

metabolic diseases in animals and humans (El-Hasnaoui 
et al., 2015). The fructose intake has elevated in last years, 
particularly in underdeveloped nations. In the visceral 
adipose tissue, the accumulation of triglycerides resulting 
from transformation of fructose can lead to hepatic 

steatosis, obesity, cardiac diseases (Baataoui et al., 2023a, 
b; Benchelha et al., 2023a, b; Elmaleh-Sachs et al., 2023).

Fructose high diet constitutes a risk factor for metabolic 
disorders (Tovoli et al., 2023), in addition, it negatively 
affects the structure and functioning of the nervous system 
and mainly the brain. Neuropsychiatric symptoms are 
common in obesity and significantly influence the social 
functioning and quality of life of people with metabolic 
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disease (El-Hamaoui et al., 2023; Fitah et al., 2023). 
Although the undergoing physiological processes of the 
origin of neuropsychiatric symptoms linked to obesity are 
still under study and require further study, they involve 
the oxidative stress (OS) pathway (Brikat et al., 2023). In 
addition, several studies have characterized gain weight as 
a moderate chronic inflammation in obese people, with 
a production deregulation of adipokines and cytokines 
by adipose tissue. A series of inflammatory cytokines 
are produced by this tissue, increasing the risk of the 
development and the complication of metabolic diseases. 
In brain cells, adipokine synthesis deregulation can lead to 
many changes, such as consequential neurodegeneration, 
cognitive and affective disorders, and changes in blood 
irrigation (Soczynska et al., 2011; Nassiri et al., 2023a; 
Brikat et al., 2023).

Diet is a determining factor responsible for several diseases, 
as it can be beneficial for health. Several studies have 
shown the beneficial effects of certain foods on the health 
of the body. In recent decades, many efforts have therefore 
been devoted to the use of different plants for therapeutic 
purposes due to their high medicinal effects, minimal 
adverse effects, and comparatively affordable price (Liu et 
al., 2012). The medicinal effects of these plants are linked 
to secondary metabolism molecules such as flavonoids, 
polyphenols, saponins, terpenoids, and alkaloids. Plant-
derived phenols have therapeutic effects in the treatment of 
some metabolic diseases, like obesity, brain cell disorders, 
atherosclerosis, and urolithiasis (Aiboud et al., 2014; El-
Hasnaoui et al., 2015; Nakache et al., 2017; Bahbiti et al., 
2018; Chakit et al., 2022a, b).

Among medicinal plant species, Curcuma longa (Turmeric) 
is widely used as an herbal supplement by the world 
population including Moroccan people. One of the active 
constituents of Turmeric is curcumin (Curc) which is a 
polyphenol responsible for the main therapeutic properties 
of this plant, mainly its antimicrobial, antioxidant, and 
anti-inflammatory activities. Curc is characterized by 
its capacity to traverse the barrier blood-brain providing 
direct contact with neurons and possible neuroprotection 
(Guariglia et al., 2023).

The objective of this study is to ass the therapeutic activity 
of methanolic extract of the rhizome of Curcuma longa 
and losartan used as an antagonist of AT1R on memory 
impairment and OS provoked by a HFD, in adult female 
Wistar rats.

MATERIALS AND METHODS

Study design
36 female Wistar rats have free access to drinking water 
and standard food. Animals food consisted of crude 

proteins, fats, cellulose, and minerals. Certain groups of 
animals were fed a standard food and others with a rich 
fructose hypercaloric diet dissolved in beverage water 
(23%, 30 ml/animal) for eight weeks. For each group, 
fructose consumptions were recorded during the eight 
weeks of manipulation. A group has received Losartan (30 
mg/kg) in their drinking water (30ml/day) for four weeks.

Chemical products
The methanolic extract of Curcuma longa was prepared by 
using Soxhlet apparatus and rotary evaporator. Animals 
were administered by gavage 0.45ml of Curcuma longa 
methanolic extract through a 50 mm copper feeding tool 
(100 mg/kg body weight) for 10 days. The daily dose of 
turmeric extract is 100 mg/kg of body weight per day. In 
the literature, the minimum and maximum doses of Curc 
were 5 and 480 mg/kg. Doses between 100 mg/kg and 300 
mg/kg were recorded as the most common doses (Brikat 
et al. 2023). Curc was administered between 1 and 84 days 
(Sanei and Saberi-Demneh, 2019). 

The group of animals treated with Los received a dose 
of 30 mg/kg/day of Los in their drinking water for one 
month (Brikat et al., 2023). The volume needed for each 
rat is 30 ml per day.

Animals
ALL experiments were conducted on adult female rats 
from the Animal House of Biology and Health Laboratory 
of the Sciences of Life Department, University of Ibn 
Tofail (Morocco). During all experiments, the rats were 
kept in 12-h/12-h photoperiod and a temperature of 23°C, 
and their body weight was regularly weighed. The breeding 
cages were regularly cleaned and the litter was renewed.

Over a period of 8 weeks, 36 female Wistar rats aged 2 
months and weighing 74 to 100 g were randomly stratified 
into six groups: 2 groups would receive a standard diet 
and 4 groups would receive the high HFD diet which will 
induce an obese state in rats. By the end of two months, 
the phase of treatment will start according to follow diet 
categories:
- A group having received a standard diet will not receive 
any qualified treatment (Control).
- A group will not receive any qualified treatment (HFD).
- A group will receive 100 mg/kg/day of turmeric, qualified 
(HFD + Curc),
- A group will receive 30 mg/Kg/day of Losartan, qualified 
(HFD + Los)
- A group having received a standard diet will also receive 
100 mg/kg/d of turmeric extract and 30 mg/kg/d of 
Losartan (Curc + Los).
- A group will receive 100 mg/kg of turmeric + 30 mg/kg/d 
of Losartan, qualified (HFD + Curc + Los).
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Memory tests
Y-maze test
This Y-maze test examines working memory using three 
identical aisles arranged in an equilateral triangle. The 
dimensions of the aisle are 13 x 4.5 x 5.5 cm. Known as a 
“spontaneous alternation” test; the rat freely explores these 
aisles without external reinforcement. The rat starts in one 
aisle, facing the intersection, and is allowed 5 minutes of 
exploration, recording entries when all four legs are inside. 
Parameters include total visits and alternations, and the 
percentage of alternation is indicative of working memory 
capacities, showing an inverse correlation. The sequence of 
alternation of entries was analyzed to obtain the % correct 
alternation which is calculated as follows:
 

% of Spontaneous alternation = [(Number of 
alternations)/ (Total arms entries-2)] × 100 

(El-Brouzi et al., 2021; Zghari et al., 2023b).

Object recognition test (ORT) 
The object recognition test in rodents assesses recognition 
memory and the ability to discern between objects in 
familiar surroundings. It measures the behavioral reactions 
of rats upon introducing a new object. Relying on the 
natural inclination of rats to explore novel objects, the test 
employs an open field with a square translucent floor and 
white vertical walls. Over three days, including habituation 
and training, the test introduces two identical objects and 
the third is different. The discrimination index parameter 
reflects the proportion of exploration time of the new 
object, varying between -100% (familiar object) to 100% 
(new object). Deficits in short-term recognition memory 
are expressed by a reduction in the recognition index 
(% RI), which is calculated according to the following 
formula: [The total time spent exploring the novel object/ 
(The total time spent exploring the novel object + The total 
time spent exploring the familiar object)] x 100 (Nassiri et 
al. 2023b; Rhaimi et al., 2023).

Morris water maze test (MWMT)
MWMT was used to assess visual short-term memory and 
visual-spatial abilities in small rodents (Morris, 1984). In 
this test, rats navigate a circular pool filled with opaque 
water, aiming to reach a platform that may be visible or 
hidden. Despite no noticeable impairment in swimming 
ability, all groups successfully locate the full platform 
through exploration. Video tracking records successive 
swims, revealing reduced time and distance during repeated 
attempts. After 12 training trials, when the platform’s 
position is changed, knockout mice exhibit increased 
difficulty in learning the new location compared to normal 
littermates. This suggests a challenge in altering learned 
spatial strategies, potentially linked to the hippocampal 
function, as spatial memory heavily relies on it.

The rat is placed in the basin, with its head directed against 
the wall at the four cardinal points. The animal’s control 
times on the platform are recorded. Each trial lasts 60 
seconds. If you cannot find the platform at the end of 
the test, it is a good time for the experimenter to wait 20 
seconds. The test is carried out the day after the last day of 
learning. The platform is removed from the pool and the 
animal is successively placed on 4 poles. The times spent 
in the platform quadrant are during the acquisition phase 
(NO) and are measured in seconds of a 60-second session. 
After 2 hours of probe testing, the visible platform phase 
appears. The platform is placed in the middle of the NO 
quadrant and visible light (1 cm above the water surface). 
Four minutes of 60 seconds are conduits to place the rat 
successively at the 4 cardinal points. Bad times to check 
the platform are measured. The parameters calculated in 
our protocol are latency times (time spent to reach the 
platform) and times spent in the NO quadrant (probe test).

NO assay
Nitric oxide (NO) production from hippocampal samples 
can be determined by estimating the concentrations 
of the final products of NO production (nitrates and 
nitrites) (Chao et al., 1992). Similarly, the nitrates were 
used to prepare a standard range which serving in the 
determination of NO.

Lipid peroxidation assay
The principle of lipid peroxidation assay is the measure of 
Malondialdehyde (MDA) formed during the free radical-
mediated breakdown of fatty acids. The assessment involves 
inducing the formation of a colored pigment in an acidic 
and hot environment (100°C) through the interaction 
between MDA and thiobarbiturate (TBA). This pigment 
absorbs at 530 nm and can be extracted by organic solvents 
like butanol.

To 0.5 ml of a homogenate from the two structures, 0.5 ml 
of 20% acid trichloroacetic acid (TCA) and 1 ml of 0.67% 
Thiobarbituric acid (TBA) were added. The mixture was 
heated at 100°C for 15 minutes and then cooled before 
adding 4 ml of n-butanol. After centrifugation for 15 
minutes at 3000 rpm, the optical density was determined 
on the supernatant in a spectrophotometer at 530 nm 
(Draper and Hadley, 1990).

Catalase activity
In this work, we studied the activity of catalase (CAT), 
since it is one of the antioxidant enzymes that catalyze the 
disproportionation of hydrogen peroxide into dioxygen 
and water according to the following reaction: 2H2O2 ==> 
2H2O + O2.

The determination of CAT activity is based on the measure 
of optical density related to H2O2 disappearance (Aebi 
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1984). In a quartz cuvette, 0.05 ml of phosphate buffer (for 
the blank) or 0.05 ml of hippocampus tissue extract was 
mixed to 1.95 ml of phosphate buffer (0.05 M, pH 7.4) 
and 1ml of H2O2 (0.05M). At 240 mm, the absorbance is 
measured after each 30 s, during two minutes in cells. The 
Catalase activity is expressed in IU/min/g. it’s calculated by 
using following formula:

A: the absorbance at 240 nm of H2O2; L: length of the 
tank used (cm) = 1cm; ξ: molar extinction coefficient = 
43.6 M-1 cm-1; X: Tissue concentration in mg/ml.

Statistical analysis 
The value differences between experimental and control 
groups are determined by analysis of variance (Anova 
one way) via GraphPad Prism software (version 8.0). The 
post-hoc Tukey was performed in the case of significant 
difference variance. The used significant degrees are 
significant at p < 0.05 (*).

RESULTS AND DISCUSSION

Y-maze test
The results recorded for the state of working memory of 
female adult rats are shown in Figure 1. HFD-treated 
group had a lower % of alternation in females in comparison 
with rats treated with standard diet (–52%; p < 0.001). 
Additionally, the administration of Curc and Los elevated 
the percentage of spontaneous alternation no significantly 
(+35% and +59%, respectively; p > 0.05), when compared 
to the HFD group. Interestingly, the association between 
HFD, Curc and Los led to a substantial increase in the 
% of alternation by 114% in comparison with the HFD 
group (p < 0.01) (Figure 1A).

Figure 1: Effect of High fructose diet on % of alternation 
of female rats measured in the Y-maze test. The data are 
presented as mean ± S.E.M. The significance level is 0.05 
with * p < 0.05, ** p < 0.01, and *** p < 0.001.

OR test
Recognition performances were tested using the OR test, 
as illustrated in Figure 2. In the ORT, our findings show 
that the recognition index did not exhibit a significant 
reduction in the HFD group when compared to control 
rats (–30%; p > 0.05). Also, the administration of Curc + 
Los increased significantly the recognition index (p < 0.01; 
+67%) in comparison with the HFD group. In contrast, 
the administration of Curc and/or Los did not improve 
the recognition index in comparison with the HFD group 
(p > 0.05).

Figure 2: Effect of High fructose diet on recognition 
memory performance of female Wistar rats evaluated in 
the OR test. The data are presented as mean ± S.E.M. The 
significance level is 0.05 with * p < 0.05, ** p < 0.01, and 
*** p < 0.001.

Morris water maze test
The MWM test was used to examine the influence of 
different treatments on the spatial learning and memory 
performance of rats. Figure 3A shows that HF intake 
lengthened escape latency in adult female rats, especially 
during the first two days of the test, in comparison with 
rats treated with standard diet (p > 0.05). Furthermore, 
Curc, Los and Curc + Los treatments were able to prevent 
this HFD-induced rise in latency (p < 0.01) (Figure 3A).

Figure 3: Behavioral performances of adult female rats in 
to the Morris Water maze. A – Escape latency during the 
acquisition phase expressed in seconds; B – The percentage 
of time spent in the target quadrant. The data are presented 
as mean ± S.E.M. The significance level is 0.05 with * p < 
0.05, ** p < 0.01, and *** p < 0.001.

During the probe test, the percentage of time spent in the 
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correct quadrant by female rats significantly decreased in the 
HFD group compared to control animals (–63%, p < 0.01). 
Notably, Figure 3B illustrates that the administrations of 
Curc, Los, and their combination effectively counteracted 
this HFD-induced memory effect (p < 0.01). They achieved 
this by elevating the percentage of time spent in the correct 
quadrant by 165%, 160%, and 197%, respectively (Figure 
3B).

Effects on oxidative stress parameters
As depicted in Figure 4A, the levels of TBARS exhibited 
a significant increase in female rats subjected to a HFD 
compared to control rats (+89%; p < 0.01). Moreover, 
the administration of Curc, Los, and their combination 
resulted in a noteworthy reduction of TBARS levels in 
the hippocampus when compared to HFD-treated rats 
(–72%, p < 0.001; –57%, p < 0.01; and –76%, p < 0.001, 
respectively).

Figure 4: Effect of Curcumin and/or Losartan on levels of 
(A) thiobarbituric acid reactive substances (TBARS) and 
(B) nitric oxide (NO) and (C) catalase (CAT) activity in 
the hippocampus of female HFD-exposed rats. The data 
are presented as mean ± S.E.M. The significance level is 
0.05 with * p < 0.05, ** p < 0.01, and *** p < 0.001.

In addition, our data indicates a significant increase in 
the mean level of NO in the HFD group, surpassing 
the corresponding values observed in female animals by 
56%, as compared to control rats (p < 0.05). In contrast, 
the administration of HFD + Curc + Los lowered NO 
levels significantly in rats in comparison with the standard 
diet-treated rats (–83%, p < 0.01). Additionally, Curc, 
Los and Curc + Los treatments decreased significantly 
NO concentrations (–58%, p < 0.001; –59%, p < 0.01 and 
–88%, p < 0.001, respectively), as compared with the HFD 
group (Figure 4B).

As shown in Figure 4C, CAT activity was significantly 
elevated in the female rats treated with HFD in comparison 
with the control rats (+182%; p < 0.01). Interestingly, 
chronic Curc, Los and Curc + Los administration, 

supplementation was markedly noted to improve the 
activity of this antioxidant enzyme, by decreasing its activity 
by 39%, 68% and 63%, respectively, when compared to the 
HFD-treated rats (p < 0.01) (Figure 4C). 

This experiment was undertaken to assess the impacts 
of methanolic extract of Curcuma longa (rhizome) and 
losartan on memory impairment provoked by a HFD, in 
adult female Wistar rats.

Memory impairment following a HFD
A key observation from this study is that a HFD had 
detrimental effects on working memory assessed in the 
Y maze, recognition memory evaluated in the ORT, and 
spatial learning and memory tested in the MWM in female 
Wistar rats. This present finding aligns with previous 
studies that demonstrated memory dysfunction resulting 
from hypercaloric diets. For example, the experiments 
carried out by Underwood and Thompson confirmed the 
adverse effects of HFD on spatial learning and memory 
(decline in the object recognition index and the % of 
alternation) in rats of both genders (Underwood and 
Thompson, 2016a, b). Also, Sangüesa et al. (2018) reported 
that the hypercaloric-fed group showed a reduced short-
term memory in comparison with their controls (Sangüesa 
et al., 2018). Additionally, as assessed by the MWM, the 
hypercaloric-fed rats showed an altered spatial learning 
and memory (decreased long-term memory) (Ganji et al., 
2017; Hyer et al., 2022; Chávez-Gutiérrez et al., 2022).

These detrimental impacts of high-caloric diets on memory 
function can be attributed to various mechanisms, such as 
diminished neurogenesis (Dias et al. 2014), alteration of 
the Hypothalamic Adrenal Pituitary (Harrell et al., 2018), 
and changes in the gut microbiota composition (Pyndt 
Jørgensen et al., 2014). Notably, oxidative stress (OS) is 
regarded as a crucial factor in the causation of memory 
impairments (Naïla et al., 2021; Zghari et al., 2023a, b). 
Hence, it is plausible that the impaired memory observed 
in rats treated with a HFD may be attributed to elevated 
OS in the hippocampus, a brain region recognized for its 
role in cognitive regulation ( Jangra et al., 2014; Chahirou 
et al., 2018). In this context, several studies have identified 
elevated levels of OS in individuals experiencing memory 
dysfunction (Singh et al., 2022). Additionally, it is essential 
to highlight the increased susceptibility of this brain region 
to OS (Taniguti et al., 2018). Naturally, given the brain’s 
elevated oxygen demand, it is particularly prone to oxidative 
damage (Lovell and Markesbery, 2007). The increased 
oxygen metabolism can result in the excessive generation of 
free radicals such as NO, which, if produced in abundance, 
have the potential to harm numerous essential biomolecules 
crucial for the normal functioning of neuronal cells 
(Harman, 1956). In fact, reactive oxygen species (ROS) are 
recognized for their ability to readily combine with NO, 
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giving rise to peroxynitrite (ONOO-). This free radical has 
been linked to diverse neurotoxic effects, ultimately leading 
to compromised memory function (Lamtai et al., 2020; 
Naïla et al., 2021; El-Brouzi et al., 2021). Supporting this 
view, our study revealed that a high-fructose diet impacted 
memory function, correlating with heightened OS in the 
hippocampus. This was evidenced by elevated levels of 
LPO and free radicals such as NO in the hippocampus 
of female rats. In line with our data, short-term fructose 
consumption has been shown to produce an increase in 
OS-specific markers (increased LPO) in the hippocampus 
of young and adult rats (Cigliano et al., 2018). The proper 
functioning of brain mitochondria is of paramount 
importance, and the overproduction of mitochondrial 
free radicals may be one of the main contributors to the 
oxidative changes in the brain associated with HFD. 
In this context, it is established that the metabolic state 
of an organism significantly influences mitochondria. 
When there is an excess of energetic substrates compared 
to demand, it has been demonstrated to negatively 
impact mitochondrial structure and function, leading to 
heightened fragmentation and an increased generation of 
free radicals (Picard and Turnbull, 2013). Furthermore, it 
is hypothesized that OS results from heightened activity 
of both nitric oxide synthase and nicotinamide adenine 
dinucleotide phosphate oxidase (NADPH), the latter 
catalyzing the production of superoxide radicals (Li et al., 
2013). A study by Jiang et al. (2011) also indicated that 
hypercaloric diets can elevate NADPH activity ( Jiang et 
al., 2011).

Additionally, an increased OS could also arise from 
changed antioxidant defenses. In agreement, we observed 
that CAT activity was elevated in the hippocampus 
of all female rats receiving fructose chronically. Also, 
a significant reduction in the activity of the antioxidant 
enzyme has been detected in the brain following high 
caloric diet administration (Mastrocola et al., 2016). In this 
context, it is crucial to emphasize that any alteration in the 
expression or activity of antioxidant enzymes, whether a 
decrease or increase, serves as an indication of OS (Peng, 
2015). Taken together, the substantial production of NO 
and the alterations in CAT activity induced by a HFD 
contribute to OS, ultimately causing cellular damage in the 
hippocampus. These modifications may contribute to the 
observed memory impairment in the current study.

Neuroprotective effects of Curc and losartan
In females fed HFD, Curc significantly improves the 
memory function as assessed by Y-Maze, ORT and 
MWM tests. The memory-deficit-ameliorating impact 
of Curc in diverse animal models has been substantiated 
through various behavioral assessments, indicating a 
neuroprotective effect. The majority of these experiments 
have reported improved short and long-term memory 

(Borre et al., 2014; Liu et al., 2014). In a recent study by 
Kamali et al. (2019) Curc administration improved memory 
and neurological deficits in rats (Kamali et al., 2019). The 
mechanisms behind the positive enhancement of memory 
deficits remain to be elucidated. Importantly, these effects 
of Curc on memory are accompanied by a decrease in 
NO and LPO levels, and a reduction in CAT activity in 
the hippocampus. Curc, having the ability to traverse the 
blood-brain barrier, demonstrates interactions with various 
target molecules associated with OS. Additionally, it has 
been observed to regulate the OS response within the 
central nervous system (Hayder and Abdulwahid, 2023). 
In this regard, Curc is commonly employed to protect 
against OS and enhance antioxidant capability. This is 
attributed to its ability to reduce LPO induced by hydrogen 
peroxide (H2O2) and significantly decrease MDA levels 
upon administration. The antioxidant properties of Curc 
are ascribed to various mechanisms, encompassing the 
inhibition of LPO, heightened glutathione peroxidase 
activity, elevated expression of antioxidant enzymes, and 
enhanced removal of free radicals (Adibian et al., 2019). 
In this sense, Curc was identified as having the capacity to 
alleviate OS by reducing the activity inducible NO synthase 
(iNOS) enzymes and modulating the levels of antioxidant 
markers (Liao et al., 2020). Moreover, Curc’s well-known 
antioxidant properties are a result of its phenolic structure, 
which has properties that destabilize free radicals by 
collecting electrons. On the other hand, Curc has been 
discovered to have contradictory effects on the amount of 
intracellular ROS, which appears to be highly dependent 
on the type of cell, much like other antioxidants such 
carotenoids and vitamins (C and E) (Hodaei et al., 2019). 
Given the above attributes, Curc appears to be a possible 
candidate as a therapeutic agent to alleviate cognitive 
impairment caused by a HFD, as our research indicates.

Multiple data sources have substantiated the neuroprotective 
effects of Los and its therapeutic efficacy in addressing 
various neurological and psychological issues (Zhang et al., 
2012). Our experiment’s results further demonstrated Los’s 
involvement in ameliorating memory deficits induced by 
HFD, aligning with numerous prior rodent experiments 
that have highlighted Los’s ability to protect cognitive 
function (Campos et al., 2020). Los can strengthen and 
improve memory and learning abilities in addition to its 
effects through the conversion of angiotensin II to IV and 
other pathways that have been demonstrated in earlier 
studies (Sharieh et al., 2014). Angiotensin II continues 
to circulate in the bloodstream and is changed by blood 
aminopeptidases into angiotensin III and IV when losartan 
and other blockers are present. Angiotensin IV improves 
memory by raising intracellular calcium levels, which are 
unrelated to NMDA receptors (Davis et al., 2006). This 
is confirmed by the abundance of AT4 receptors in the 
hippocampus, neocortex, basal glands, and amygdala, which 
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play a role in regulating learning and cognitive processing 
(Chai et al., 2000). Also, Los causes a dose-dependent 
increase in the hippocampal depolarization-induced 
release of acetylcholine (Lee et al., 2001). This implies that 
Ang IV enhances memory through a mechanism involving 
potentiation of cholinergic transmission. Kramár et al. 
(2001) have shown that Ang IV also improves LTP, the 
neuronal underlying of learning and memory (Kramár et 
al., 2001). Additionally, one suggested explanation for how 
Los protects memory involves its ability to diminish OS in 
the brain through various concurrent mechanisms. These 
include the suppression of pro-inflammatory mediators 
like iNOS (Saavedra et al., 2011; Benicky et al., 2011). 
Remarkably, NOX2 deletion and SOD2 upregulation 
restored hippocampal-dependent and contextual memory 
deficits when using Los (Lin et al., 2018). Through the 
inhibition of the angiotensin-II receptor, Losartan has the 
potential to reduce oxidative stress and alleviate oxidative 
damage (Shirai et al., 2014). This is typically manifested by 
an elevation in the activity of antioxidant enzymes such 
as SOD or CAT and a reduction in the levels of certain 
peroxidation products like MDA. In agreement, our study 
demonstrates that chronic intake of Los prevents against 
HFD complications such as hippocampal OS by restoring 
NO and LPO levels and CAT activity. 

Importantly, we noted that co-administration of methanolic 
extract of Curcuma longa (rhizome) and Los exhibited 
a more pronounced improvement in HFD-provoked 
memory alterations in comparison with treatment with 
Curc or Los only. This may be attributable to the possible 
synergistic interaction between Curc extract and Los. 
An investigation into the interplay between medicinal 
plants and synthetic antihypertensive medications 
revealed that Curc Longa exhibits positive impacts on 
the pharmacokinetics of antihypertensive drugs like Los 
(Liu et al., 2012). Administration of Curc Longa prior to 
treatment enhances the plasma concentrations of Losartan 
and its metabolite in Wistar rats, consequently boosting 
the bioavailability of Losartan (Liu et al., 2012), and 
subsequently enhancing its beneficial effects in the body, 
particularly in the brain.

CONCLUSIONS AND 
RECOMMENDATIONS

In conclusion, the results of this study illustrated that 
persistent intake of HFD adversely impaired working 
memory, recognition memory and spatial learning and 
memory in female Wistar rats, which was linked to 
increased OS in the hippocampus. Furthermore, our 
findings indicate that treatments involving Curcuma 
Longa and/or Los may serve as promising therapeutic 
approaches for addressing memory impairment and OS 

induced by a HFD. Nevertheless, a notable limitation of 
our experiment may stem from the absence of further 
determinations of OS biomarkers, such as SOD, GSH, or 
carbonyl groups. In addition, the assessment of the effects 
of HFD, Curc and Los was carried out only on female 
rats. It is preferable to compare these effects in rats of both 
sexes in order to investigate the possible presence of sexual 
dimorphism. It is evident that further research is necessary 
to elucidate the specific mechanisms underlying these 
associations.
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