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INTRODUCTION

Exploring the complex interactions between nutrition, 
immunity, and general health has received more atten-

tion in modern poultry farming. This focus is particularly 

vital given that broiler chickens, a significant portion of the 
world’s poultry production, frequently face gastrointestinal 
problems that harm their health and growth (Ducatelle et 
al., 2023; Tarradas et al., 2020). Traditional approaches to 
treating gut health problems in the past relied on antibi-
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otics (Zhu et al., 2021). However, this approach has been 
plagued by well-documented adverse effects, most nota-
bly the emergence of antibiotic resistance (Roberts et al., 
2015). To overcome these obstacles and optimize the re-
sults of poultry production, incorporating natural products 
into animal feed has become a viable alternative (Abdelli 
et al., 2021; Fan et al., 2015). These natural products are 
envisioned as potent feed additives capable of modulating 
the physiological equilibrium of broiler chickens, thereby 
enhancing their performance and well-being.

Teak (Tectona grandis) leaves, ginger (Zingiber officinale), 
and Turmeric (Curcuma longa) have been studied for their 
potential as mucosal immunoregulators or immunoregula-
tory activity in general (Asdaq et al., 2022; Harun and Mo-
hamad, 2022; Thimmulappa et al., 2021). Previous stud-
ies have shown that these plants have anti-inflammatory 
properties and gained a perspective in the poultry industry 
(Abd El-Hack et al., 2020; Daramola, 2022; Khan et al., 
2012). However, the use of those plants in combined ingre-
dients remains no result. Moreover, specific studies associ-
ating those herbs with mucosal immunity still need to be 
available. While the anti-inflammatory properties of these 
herbs have been extensively elucidated, there still exists a 
significant knowledge gap concerning their specific mech-
anisms within the realm of chicken mucosal immunity.

Unlocking the latent potential of Teak, Turmeric, and 
Ginger concerning modulating gut health and mucosal 
immunity in broiler chickens necessitates the application 
of cutting-edge network biology methodologies. Network 
biology and network pharmacology are powerful tools 
used to identify potential targets for natural-derived com-
pounds (Shah et al., 2023), and it has been applied to iden-
tify potential targets in avian diseases (Peng et al., 2022; 
Wu et al., 2021). These tools use computational methods to 
analyze complex biological systems and identify key nodes 
and pathways involved in a particular disease or condition. 
These studies demonstrate the potential of network biology 
and network pharmacology in identifying suitable targets 
for natural-derived compounds with anti-inflammatory 
properties. By employing network biology coupled with 
molecular docking and molecular dynamics simulation, 
this paper will unravel the potential of Teak Leaves, Tur-
meric, and Ginger as feed additives to improve gut health 
status by modulating mucosal immunity.

MATERIAL AND METHODS

Construction of Biological Network and 
Network Topology Analysis
Network biology was constructed by Cytoscape 3.10 
(Shannon et al., 2003). First, a network was constructed by 
a text-mining method employing PubMed queries using 
“gut health” and “mucosal immunity.” The network param-

eters were set as 0.5 as a confidence interval and specified 
for Gallus gallus proteins. After the gut health and mucosal 
immunity networks were constructed, those networks 
merged. The merged network was then analyzed for net-
work topology by CytoHubba (Chin et al., 2014). Several 
algorithms were employed, and the most frequent protein 
with consistently high rank in each hub-ness algorithm was 
selected as the most suitable target for subsequent analysis.

Retrieval of Three-Dimensional Structures of 
the Protein and Compounds
The structure of IL-6 was obtained from the homology 
modeling method according to the amino acid sequence 
in the UniProt database (Q90YI0). The modeling was per-
formed in the SwissModel webserver (Waterhouse et al., 
2018) and the experimental structure with PDB ID 7NXZ 
was selected as a template. The obtained three-dimensional 
(3D) structure of IL-6 was then used for binding site pre-
diction using P2Rank (Krivák and Hoksza, 2018). The pre-
dicted binding sites are GLN89, ASP90, MET92, CYS93, 
PHE96, VAL98, CYS99, SER102, LYS209, HIS213, 
LEU216, and ARG217. Those residues are then used to 
guide specific docking in the subsequent analysis.

The list of bioactive compounds from Teak Leaves (Tectona 
grandis), Ginger (Zingiber officinale), and Turmeric (Cur-
cuma longa) were retrieved from previous reports (Asdaq 
et al., 2022; Chao et al., 2018; Gumbarewicz et al., 2022). 
After listing all identified compounds, the 3D structure 
was downloaded from the PubChem database (Kim et al., 
2023). The list of the bioactive compounds and the Pu-
bChem compound identity number (CID) is mentioned 
in the supplementary file (table S1). The 3D model was 
then used for molecular docking analysis.

Molecular Docking
Molecular docking was performed by treating the protein 
as a rigid molecule while the compounds were flexible 
(Hermanto et al., 2019). Specific docking was applied, re-
ferring to the previously predicted binding site. The dock-
ing was executed in PyRx 0.8 interface with the Vina 1.2.5 
program (Dallakyan and Olson, 2015; Trott and Olson, 
2010). The top 10 compounds’ conformation was sorted 
and selected for further analysis according to the bind-
ing affinity. The conformation was then complexed with 
the protein to analyze the interaction chemistry for each 
formed complex using Biovia Discovery Studio 2019. 

Molecular Dynamics 
Molecular dynamics was performed to assess the stability 
of the protein-ligand complex according to the protein, 
ligand, and conformational interaction point of view. 
YASARA (Krieger and Vriend, 2015) performed the 
simulation for 20 ns. The simulation was performed 
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under YASARA2 forcefield (Krieger et al., 2009) in a 
physiological milieu as mentioned in a previous study 
(Syahraini et al., 2023) with minor adjustments as follows: 
7.4 pH; 310K temperature; 1 bar pressure; 0.9% of NaCl 
concentration; and 0.997 water density. The simulation was 
performed in a Cubic-shaped simulation chamber. The 
value of RMSD was used to identify atomic movement in 
the structure. In addition, RMSF was used to identify the 
highest fluctuation residue in each complex (Hermanto 
et al., 2022b). In addition, binding free energy was also 
calculated using YASARA analyzebindingenergy.mcr 
macros under YASARA2 forcefield, Poisson-Boltzmann 
(PBS) method, surface tension term of 0.65 kJ/mol/A2, 
and by omitting the entropy terms as a large portion of 
MM/PBSA studies (Genheden and Ryde, 2015).

RESULT AND DISCUSSION

Network Biology Discovered Interleukin-6 
as the Key Mediator in Mucosal Immunity to 
Achieve Gut Health in Broilers
Intestinal health is intricately linked to the mechanisms of 

mucosal immunity (Duangnumsawang et al., 2021), which 
plays a pivotal role in regulating the gut microbiota pop-
ulation while also orchestrating immune system responses 
(Broom and Kogut, 2018; Fritsch and Abreu, 2019). The 
complexity of these mechanisms renders identifying target 
molecules a non-trivial endeavor. Hence, network biology 
approaches are harnessed to facilitate the precise target-
ing of crucial components. Initially, a text-mining process 
is initiated, employing keywords such as “gut health” and 
“mucosal immunity” to compile a comprehensive biolog-
ical network encompassing all proteins associated with 
these two mechanisms (Figure 1, left panel). Subsequently, 
a merging process is undertaken to identify proteins con-
currently involved in both mechanisms. The results of this 
merging process are illustrated in Figure 1. After creating 
this composite network, potential targets are identified 
based on the network’s topological characteristics resulting 
from the merging process.

Topology analysis of the biological network was conduct-
ed utilizing algorithms integrated within the Cytohubba 
plugin (Chin et al., 2014) within the Cytoscape 3.10 soft-
ware (Shannon et al., 2003). Based on the evaluation of

Figure 1: Biological network topology contains proteins involved in mucosal immunity, digestive health, and proteins 
involved in mucosal immunity and digestive health.
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Figure 2: Identification of the level of importance of a protein in a biological network using 11 Cytohubba algorithms 
(A) and a summary of the proteins that consistently have the highest scores (B).

11 topological parameters within the biological network, 
it was discerned that interleukin-6 (IL-6) emerged as the 
strongest candidate for potential targeting in the regula-
tion of both digestive health and mucosal immunity (Fig-
ure 2). This determination was arrived at by aggregating 
the results of the 11 distinct topological algorithms, con-
sistently positioning IL-6 at the highest rank with the 
most substantial score. Consequently, in the ensuing anal-
ysis, predictions were made regarding the interactions of 
compounds derived from teak leaves, turmeric rhizomes, 
and ginger rhizomes as agents governing digestive health 
and mucosal immunity regulation.

As a part of immune regulators, IL-6 is essential for the 
immune response of mucosal tissues (Wolf et al., 2014). 
In addition to controlling inflammation, cell proliferation, 
and differentiation, low levels of IL-6 help to keep the in-
testinal barrier functioning (Song et al., 2018). Previous 
studies demonstrated that IL-6 attenuates intestinal per-
meability by altering tight-junction barriers in vitro and in 
vivo (Al-Sadi et al., 2014), suggesting that IL-6 inhibition 
may modulate intestinal permeability. In line with previ-
ous reports, obstructing IL-6 activity has been suggested 
as a potential method for enhancing intestinal morphology 
and health in broilers (Lin et al., 2023; Song et al., 2018; 

Zhang et al., 2022). Inhibiting IL-6 has been shown in 
studies to reduce inflammation and improve intestinal bar-
rier function, which in turn promotes growth and lowers 
mortality in broilers (Lin et al., 2023; Song et al., 2018; Tan 
et al., 2023; Zhang et al., 2022). Therefore, targeting IL-6 
to modulate mucosal immunity and gut health becomes a 
promising way.

Several Bioactive Compounds from Teak Leaves, 
Ginger, and Turmeric Interacted with IL-6 to 
Achieve Inhibitory Activity
The next step involves identifying interactions between 
compounds present in teak leaves, turmeric rhizomes, and 
ginger rhizomes in inhibiting IL-6. A total of 47 com-
pounds were screened through molecular docking (MD) 
analysis, and calculated binding affinities ranged from 
-6.01 to 81.495 kcal/mol (supplementary file, table S1). 
The ten best-candidate compounds potentially inhibiting 
IL-6 were selected based on their binding affinity values. 
Among these ten candidates, five compounds were derived 
from teak leaves, four from ginger, and one from Turmer-
ic (Table 1). These findings allow us to predict synergistic 
effects among the compounds in the three herbal combi-
nations in inhibiting IL-6, which could be significant for 
regulating digestive health and mucosal immunity. 
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Table 1: The binding affinity values of the ten compounds with the lowest values were based on MD analysis.
Compound Herbs Binding Affinity (kcal/mol) Reference
ß-sesquiphellandrene Zingiber officinale -6.01 Gumbarewicz et al., 2022
Zingiberene Zingiber officinale -5.837 Gumbarewicz et al., 2022
Ar-turmerone Curcuma longa -5.828 Chao et al., 2018
Luteolin 7-O-diglucuronide Tectona grandis -5.759 Asdaq et al., 2022
Apigenin 7-O-diglucuronide Tectona grandis -5.719 Asdaq et al., 2022
Verbascoside Tectona grandis -5.626 Asdaq et al., 2022
Ar-curcumene Zingiber officinale -5.597 Gumbarewicz et al., 2022
ß-bisabolene Zingiber officinale -5.467 Gumbarewicz et al., 2022
Quercetin Tectona grandis -5.463 Asdaq et al., 2022
Chlorogenic acid Tectona grandis -5.462 Asdaq et al., 2022

Figure 3: Interaction chemistry among selected compounds according to the molecular docking analysis.

Next, an interaction chemistry analysis was conducted 
among the previously identified top 10 compounds with 
IL-6. The details of the interaction chemistry for each 
complex are described in the supplementary file (figure 
S1). Broadly, the chemical interactions analyzed fall into 
three main categories: hydrogen bonds, hydrophobic in-
teractions, and van der Waals interactions (Syahraini et 
al., 2023). Hydrogen bonds are the most vital type of in-
teraction, so compounds with the highest number of hy-
drogen bonds are expected to exhibit the best inhibitory 
activity compared to other compounds (Chen et al., 2016; 
Patil et al., 2010). However, the presence of hydrophobic 
bonds also contributes to the stability of interactions (Fer-
enczy and Kellermayer, 2022; Patil et al., 2010), including 
pi-hydrophobic, alkyl hydrophobic, or mixed pi/alkyl hy-

drophobic (Meylani et al., 2023). In addition, compounds 
with more interaction at predicted binding sites were con-
sidered the most excellent candidates for IL-6 inhibitors. 
Referring to those requirements, Verbacoside emerged as 
the compound with the highest number of hydrogen bond 
interactions, supplemented by five hydrophobic bonds. Lu-
teolin 7-O-diglucuronide and Quercetin were also found 
to have significant hydrogen bond interactions, supported 
by an adequate number of hydrogen bonds and Van der 
Waals interaction to stabilize their interactions with IL-6. 
Although no hydrogen bond was formed, ß-Sesquiphel-
landrene had 11 Alkyl bonds and the lowest binding affin-
ity (Figure 3). Therefore, these compounds will be further 
examined for the stability of their interactions and struc-
tural confirmation using the molecular dynamics simula-
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tion (MDS) approach.

Referring to the MDS analysis, the interaction of those 
selected compounds slightly alters the structural integri-
ty of IL-6 (figure 4A). Most of the complexes achieved 
stable conformation after the fifth ns of simulation, with 
IL6-Luteolin 7-O-diglucuronide appearing to have the 
highest value of RMSD (figure 4A). This pattern may 
appear due to the stabilization process of this compound, 
which induces more stable conformation after docking 
into IL-6. The data is also supported by the RMSF value, 
which indicates a low fluctuation below 3 Å. The highest 
RMSF value was displayed in each complex’s C-terminal 
region (figure 4B). This instability is a common feature in 
proteins (Iwakura and Honda, 1996), as also reported in 
other similar molecular dynamics studies (Hermanto et al., 
2022a, 2022b; Meylani et al., 2023; Rohman et al., 2023).

Binding free energy revealed some energy fluctuations 
among analyzed complexes with no apparent difference 
(figure 4C). These values confirmed the molecular docking 
analysis, ß-Sesquiphellandrene, which showed the lowest 
binding free energy among analyzed complexes. Most 
simulated complexes displayed a fluctuation in energy val-
ue, and Verbacoside appeared to have the most fluctuation 
(figure 4C). Low and stable energy values described that 

the protein-compound complex had more favorable struc-
tural stability than the unbound state of the protein and 
the compound separately (Hermanto et al., 2022a). The 
fluctuation of binding free energy appeared to be affected 
by the compounds’ conformational stability. This statement 
was supported by the high RMSD of ligand conforma-
tion of Verbacoside than other compounds. Again, ß-Ses-
quiphellandrene and Quercetin showed the most stable 
conformation upon binding with IL-6 (figure 4D). As 
previously described, structural stability had an entropic 
cost in forming a complex (Majewski et al., 2019). Hence, 
Verbacoside may be less effective as an IL-6 inhibitor due 
to its conformational instability. 

Hydrogen bond becomes the most influential interaction 
chemistry to support protein-ligand interaction stabili-
ty (Chen et al., 2016; Kubinyi, 2001), particularly related 
to the entropic penalty (Majewski et al., 2019). Interest-
ingly, Verbacoside had the second-highest hydrogen bond 
formation during the simulation period after Luteolin 
7-O-diglucuronide (figure 4E). The protein and ligand 
frequently use robust hydrogen bonds such as N–H...O, 
O–H...O, N–H...N, and more feeble bonds like C–H...O 
and C–H...N (Panigrahi, 2008). Combining strong-weak 
hydrogen bonds will alleviate protein-ligand binding affin-
ity (Chen et al., 2016). Referring to those types of hydro

Figure 4: Structural stability of selected complexes according to the value of RMSD backbone atom (A), RMSF of 
per-residue (B), binding free-energy estimations (C), RMSD of ligand conformation (D), and the number of hydrogen 
bonds (E).
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gen bonds, both Luteolin 7-O-diglucuronide and Verba-
coside have mixed strong-weak hydrogen bonds due to the 
involvement of conventional and carbon-hydrogen bonds 
in their protein-ligand complexes (Figure 4). However, due 
to a stable structural conformation, Luteolin 7-O-diglu-
curonide may have advantages through the π-interactions, 
Van der Waals interactions, and the entropic penalty (fig-
ure 4D). As summarized earlier, π-interactions can provide 
additional stabilization to the protein-ligand complex, en-
hancing the binding affinity and specificity of the ligand 
(Freitas and Schapira, 2017). In addition, Van der Waals 
interactions, specifically dispersion interactions, dominate 
the ligand binding to the protein, contributing to favorable 
enthalpic contributions in the binding process (Barratt et 
al., 2005). In summary, Luteolin 7-O-diglucuronide, Ver-
bacoside, Quercetin, and ß-Sesquiphellandrene have ex-
cellent potential to inhibit IL-6 through their chemistry 
interactions and further stabilize their inhibitory activities. 
Inhibition of IL-6 may become beneficial in achieving in-
testinal gut health balance. Nevertheless, other factors, such 
as the contribution of gut microbiota, may also be involved 
in that mechanism. Thus, further studies are still required 
to comprehend the role of the bioactive of teak, ginger, and 
Turmeric in regulating intestinal immunoactivity.

CONCLUSIONS AND 
RECOMMENDATIONS

In conclusion, teak leaves, Turmeric, and ginger emerge as 
promising natural additives to enhance broiler chicken gut 
health by modulating mucosal immunity. Utilizing net-
work biology and molecular docking identifies interleu-
kin-6 as a pivotal mediator, unveiling potential targets for 
these herbs. Their demonstrated anti-inflammatory prop-
erties and impact on gut microbiota offer a potential an-
tibiotic substitute in the poultry industry. Further research 
is essential to understand the protective mechanisms com-
prehensively and optimize their incorporation into feed 
formulations. Moreover, investigations should delve into 
specific mechanisms, explore synergies in combining these 
herbs, conduct in vivo studies for validation, and assess 
long-term effects on poultry health, performance, and eco-
nomic feasibility in commercial feed formulations.
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