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Abstract | Orf otherwise known as contagious ecthyma is a mild, self-limiting, localized skin disease of small 
ruminant’s viz. sheep and goats, ensuring its presence and related economic loss all over the world. The virus 
is the prototype member of the Parapoxvirus genus of the Poxviridae family and is known to cause zoonotic 
affection sporadically. The main attraction to this virus has always been its wide range of virulence factors, 
known to be responsible for deceiving the host’s defense strategies and causing re-infection within a year of 
infection. From viroceptors like chemokine binding protein to GM-CSF and IL-2 inhibiting factors, to vi-
rokine like Interleukin-10, shifting the cell cycle phase (Poxviral anaphase-promoting regulator complex) and 
enhancing nutrients and oxygen supply (vascular endothelial growth factor), ORFV possesses several unique 
strategies, to fight against host immune environment. Some of the genes have been acquired from the host 
and some are flowing through the family and genus evolving with the virus to adapt and efficiently set up an 
infection in immune-loaded host cells. This review focuses on the important virulence genes of the orf virus 
and their functions with recent advances and the way they can be manipulated for different benefits to the 
research community viz candidates for cancer biotherapy, immunomodulators, antivirals, viral vectors, and 
recombinant vaccines.
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Introduction

Viruses have gained a lot of attraction in the new era 
because of their ability to mutate fast and emerge 

into a whole new virus with varying host range and 
pathogenicity. There has been a long battle between 
viruses and humans since ages viz. 1918 Spanish flu to 
2019 SARS-Cov-2 pandemic. Drastic environmental 
changes, ecologic and social habits of humans, and 

economic conditions have been an important factor in 
the transmission and emergence of various infectious 
diseases. The emerging and threatening viral diseases 
to public health put forth the need of “One Health 
approach” to study every potential virus in detail. 

This review is focused on one of the most studied 
poxviruses after Vaccinia virus. Orf virus (ORFV) is 
known for its unique properties like immune evasion 
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and re-infection in the host and has gained the 
interest of researchers in the present day. Orf is an 
important disease of small ruminants and also causes 
mild localized infections in humans [1]. It also affects 
camels, llamas, and some other wild animal species. 
Recent reports of ORFV infection in mountain goats, 
Sitka-black tailed deer, Dall’s sheep, muskox, and 
caribou indicates its host range switch ability [2]. 
Some reports of malignant lesion which often leads 
to death of animals are also reported [3]. The virus 
belongs to the family Poxviridae and carries many 
unique features viz. a number of virulence factors, 
immune evasion property, and inducing a short-lived 
immune response and thus re-infecting its host. The 
disease has been ignored by the small-scale farmers 
rearing small ruminants due to its self-limiting 
property and because of this notion, it has caused 
severe damage to the economy of many countries 
that have not even been recorded and resulted into 
spread to wild animals [3]. Although, an increasing 
number of recent reports on orf outbreak and its 
consequences, lack of proper attention and vaccines 
indicates that the virus is emerging to a more fatal 
form [3]. Different strains and recombination among 
the variants of virus are reported in one of the studies 
from Argentina, indicating the need for specific virus 
determination and specific vaccine [4]. 

Pathogenomics and virulence factor database for viruses
Pathogenomics is a field well known for bacterial 
virulence factor study [5] [6]. The study uses high-
throughput genome sequencing and extensive 
bioinformatics for identifying genes encoding 
resistance or virulence factors [7]. Although a varied 
pool of virulence genes for different viruses has been 
already studied, the lacuna is a compilation of the data 
and a database. This database can help to ease the 
comparative studies while referring to immune evasion 
strategies of viruses and help in future challenges.

Virulence factors or genes of ORFV
Parapoxviruses are known to encode several virulence 
factors from the ends of the genome. Taken from the 
ancestral Poxviral genome or its host genome, these 
virulence genes have co-evolved with the virus to 
adapt it to host cell environments. A schematic of the 
location of different virulent genes or factors in the 
ORFV genome is presented in this review (Figure 
1). These genes are not essential for viral replication 
in cell culture, but support the survival of virus in-
vivo by helping the virus to replicate and survive in 

the specific immune environment [8]. Some of the 
unique PPV’s virulence genes are responsible for 
determining host range, pathogenesis, and virulence 
[9]. Some of the virulence genes are “captured” 
from the host during evolution like dUTPase, vIL-
10, VEGF, Poxviral anaphase-promoting complex 
analog, and anti-apoptotic factors as indicated by their 
similarity to their cellular counterparts and absence 
from other Poxviral genomes [9]. This adaptation is 
probably because of the intricate relationship between 
host and virus. While CBP and GIF genes are 
believed to be the descendants of ancestral poxviral 
genes, NF-kB inhibitors genes found in PPVs are 
different from that of other poxviruses, without any 
similarity or homology. The review focuses on the 
on virulence genes of ORFV, as they hold potential 
for various uses like in the development of antiviral 
agent, immunomodulators, bio-therapeutics, and viral 
vectors [10]. List of potential virulent genes or factors 
of ORFV genome and their characteristics is depicted 
in Table 1.

Figure 1: Schematic representation of different immunomodulatory 
proteins encoded by virulent genes of orf virus genome, their location 
and functions.

VEGF (Vascular endothelial growth factor)
ORFV is the first among the viruses to report the 
presence of VEGF homologue VEGF-E. All the 
PPVs are known to encode the ORF132 (VEGF) 
gene from the 3’ terminal of the genome [9]. The 
VEGF glycoprotein binds the tyrosine kinase 
receptors, designated as VEGFRs present in the host 
cell and functions to enhance the oxygen and nutrient 
supply in infected cells to support virus survival and 
replication [11]. The gene is reported to be grouped as 
two different categories viz. VEGF-NZ7 and VEGF-
NZ2 are based on differentiating inter-isolate variation 
[12]. Following this study, molecular epidemiology was 
done recently revealing the circulation of the VEGF-
NZ7 gene containing isolates in India, and some from 
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Table 1: Compiling the key functions, ORF length in genome, their homologues if present in VACV and gene length 
of virulence genes
Virulence genes ORF & VACV 

homologue
Key functions Gene length

dUTPase ORF007 (F2L) Enhancing infection in non-dividing cells 506 bp
NF-kB acetylation inhibitor ORF002 Inhibitor of NF-kB activation 344bp
NF-kB inhibitor ORF024; ORF121 Inhibitor of NF-kB activation 875bp; 905bp
VEGF ORF132 enhance the oxygen and nutrient supply in infected cells 446bp
GIF ORF117 (A41L) Manipulate chemokine response 794bp
Apoptosis inhibitor ORF125 inhibits the mitochondrial downstream pathway of apoptosis 518bp

VIR ORF020 (E3L) Suppress antiviral activity by inactivating dsRNA induced 
interferons

548bp

vIL-10 ORF127 Suppress other defensive cytokines 551bp
CBP ORF112 (C23L) Bind and inactivate the cytokines and chemokines in infected 

cell 
863bp

PACR/ Ring H2 protein ORF014 Maintain infected cells in G0/G1 phase providing cells in 
sufficient supply

278bp

Figure 2: Severe proliferative type of orf lesions present around 
mouth region of young lamb from a field outbreak.

China and the rest known isolates possess VEGF-
NZ2 type [13]. Mutational analyses suggested that 
the expression of VEGF in wild-type isolates leads to 
the formation of rete ridges with extensive epidermal 
proliferation and scab formation, which was not found 
in the recombinants [14]. Hence, peculiar finger-like 
projections of the lesions and involvement of VEGF 
in severe scab formation (Figure 2) can be correlated 
with the expression of VEGF [15]. The two types of 
VEGF genes can be a responsible factor for two types 
of lesions reported viz. severe and mild, which needs to 
be experimentally proved using both types of isolates. 
Even having the marked variation in the sequence, 
both the types possess conserved homodimeric 
structure and cysteine knot motif responsible for its 
activity [9, 15-16]. VEGF is specifically encoded by 
PPVs, whereas in other poxviruses, it is epidermal 
growth factor (EGF) only. For the same reason, the 
highly vascularized lesions of orf can be differentiated 
from the proliferative lesions of other poxviruses [9]. 
VEGF-E gene of the Vero cell-adapted attenuated 
ORFV D1701-V strain is found to be the most 
suitable target for insertion and expression of foreign 
genes and using it as an effective viral vector [17].

VIR (viral interferon resistance) 
VIR is encoded by the ORF020 gene situated at 
the left end of the genome and utilizes the strategy 
providing the resistance to virus against interferon 
(Figure 1). VIR protein binds the interferon-induced 
dsRNA-dependent kinases, suppressing JAK-STAT 
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signaling and subsequently their antiviral activity [9, 
18]. VACV E3L gene is the only homolog shared 
by other poxviruses. ORF020 gene product can 
complement its homolog gene of VACV E3L in-
vitro, as it shares 31% amino-acid identity [19]. The 
gene was found to show species-specific clusters in 
phylogenetic analysis, which is again an important 
finding to molecular epidemiology of the disease. The 
gene is found to be highly conserved among the genus, 
as well as among the different members of Poxviridae 
suggesting it as a good candidate for broad-spectrum 
antiviral [20]. 

PACR (poxvirus anaphase-promoting complex regulator)
ORFV along with its other PPV genus members 
encodes PACR to modulate the cell cycle in highly 
specialized immune epidermal cells, unlike most 
poxviruses that encode nucleotide metabolism 
enzymes like thymidine kinase and ribonucleotide 
reductase [9]. ORF014 gene encodes this protein 
which is similar to the APC11 subunit (RING H2 
protein) of APC (Anaphase promoting complex) 
but lacks its functional ubiquitin ligase activity [21]. 
Therefore, the competitive binding of PACR to the 
C-terminal of APC2 subunit (a scaffold protein) in 
place of APC11 [22, 23] disturbs the functioning of 
APC and allows the cells to enter S phase [24]. The 
unbound APC11 subunit undergoes ubiquitination 
and proteasomal degradation. The unavailability of 
APC regulates the transition of the G1/S phase i.e., 
synthetic phase. ORFV-PACR like gene products 
is also found to be encoded by other poxviruses like 
MOCV and crocodile poxvirus. PACR gene which is 
common to all GC rich Chordopoxviruses and their 
specific targeting of epidermal cells suggest a link 
between the divergences of poxviruses [9]. Our lab 
studied that this gene possesses a specific difference 
in ORF lengths of sheep and goat isolates, reflected in 
the phylogenetic relationship. For the very first time, 
we found that the sheep and goat origin isolates can 
be differentially diagnosed through multiplex PCR 
(Unpublished data). 

Apoptosis inhibitor
ORFV-125 gene encodes an anti-apoptotic product, a 
defensive phenomenon of the virus to prevent dying of 
host cells contain the spread of infection [25]. Sequence 
analysis of the ORF125 gene shows similarity in its 
C-terminal motif with Bcl-2-family members, but 
no homology to the VACV anti-apoptotic F1L gene 
and other poxviruses [26]. ORF125 protein binds and 

inactivates the BH3-range proteins, the pro-apoptotic 
members [27]. ORF125 shows 60-70% identity at the 
nucleotide level among ORFV isolates and PPVs but 
doesn’t show homology to any other viruses [9]. In 
contrast to the ORF125 gene, ORFV also encodes 
an apoptosis-inducing protein (ORF119) functioning 
by down-regulating the anti-apoptotic proteins Bcl-2 
and cIAP-2 [28]. Transcriptome analysis of ORFV 
infected cells suggested that there is coordinated up 
and down-regulation of apoptosis-related genes and 
hence, links the viral interference in apoptosis [29].

dUTPase (dUTP pyrophosphatase)
An essential enzyme for nucleotide metabolism is 
encoded by ORF007 as an early protein, dUTPase 
[30]. Unlike other virulence genes, ORF007 is not 
essential for  the in-vitro  growth of ORFV, but  in 
vivo, it enhances the replication of the virus in non-
dividing cells [31]. The basic function of dUTPase is 
to hydrolyze the dUTP to dUMP and pyrophosphate 
(PPi). This limits the intracellular pool of dUTP and 
simultaneously provides the precursor (dUMP) for 
the synthesis of thymine maintaining the ratio of 
dUTP/dTTP. The increased concentration of dUTP 
in cells leads to the incorporation of uracil into DNA 
and other mutational changes [32]. Functional activity 
of dUTPase is found to be mainly regulated by five 
conserved amino acids “dUTPase motifs” acting as 
the active site of the enzyme [33-35]. The enzyme 
functions in a trimeric state and have the three active 
sites in which the tyrosine residue was found to be 
the active catalytic component as the functional loss 
of enzyme was demonstrated by its modifications 
(nitration and acetylation) [36]. This motif is reported 
to be found in all the dUTPase of viruses till now 
described viz. different retroviruses [37-41]. Therefore, 
its active site can be targeted for attenuation of the 
gene. Also, it has been described as a potential target 
for chemotherapeutic drugs [42]. The activity of 
dUTPase is found to be over the pH range of 6-9 
and a temperature of 25-37°C [43]. This enzyme 
can be inhibited with an increased concentration of 
EDTA. Divalent cations like Mg+, MN+ act as co-
factor to enhance its activity. ORFV dUTPase is more 
similar to mammalian dUTPase enzyme than other 
poxviruses, which suggests that it is acquired by the 
horizontal transfer from the host cell genome [44].

NF-ќB inhibitors
NF-kB (nuclear factor kappa-light-chain-enhancer 
of activated B cells) is a protein complex responsible 
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for the regulation of immune response in infection. It 
is present in the cytosol of all cell types in an inactive 
state, bounded with IkB protein (inhibitor of kB). 
In response to any stimuli like infection, stress, etc., 
IKK (IkB kinase) is activated which destroys IkB 
[45]. Activated NF-kB is translocated to the nucleus, 
where it binds the DNA and helps it to transcribe 
the sequence, modulate its function accordingly to 
combat the change in the cell, and establish innate 
immune response. Hence, NF-kB inhibitors disrupt 
this process of immunity development. PPVs encoded 
NF-kB inhibitors are different from those encoded by 
other poxviruses like leporipoxvirus, molluscipoxvirus, 
yatapoxvirus, and orthopoxvirus suggesting the 
evolutionary deviations [46].

ORFV encodes three NF-kB inhibitory factors viz. 
ORF002, ORF024, and ORF121 [47-49]. The three 
factors have different functions but, eventually to 
inactivate the NF-kB signaling. Within the genus 
also, marked differences in homology have been 
reported [9]. ORF002 is an early-late protein of 
117 amino acids, encoded from the left terminal 
region of the genome of PPV [50]. Among the three 
NF-κB inhibitors, the ORF002 is the first nuclear 
inhibitor having no homologs in other genera of the 
Chordopoxvirinae subfamily except equine molluscum 
contagiosum virus [51, 52]. Deletion mutants of 
ORF002 recommended the non-essential role of the 
gene in replication and virulence [48]. ORF002 and 
E1A protein of Adenovirus shares some conserved 
domains, therefore based on the comparative analysis, 
it was suggested that N-terminal amino acids of 
the ORF002 protein are responsible for blocking of 
phosphorylation of serine residue at 256 positions 
and thereby, inhibition of acetylation of NF-kB-p65 
in the nucleus [53]. Notably, it was found that only 
the deletion of ORF121 has a significant change 
in virulence and pathogenesis [9]. ORF121 gene is 
conserved among its ORFV sheep and goat isolates 
and encoded early in the infection [47]. ORF121 
binds NF-kB-p65 and inhibits its phosphorylation 
and nuclear translocation. Likewise, ORF024 inhibits 
the phosphorylation of IkB kinases and thereby 
inhibiting the activation of the IKK complex [49]. 
Despite tending to compact the genome, why the 
poxviruses encode several NF-kB inhibitors is a big 
question to the researchers [54]. 

Virokine, viral interleukin-10 (vIL-10) 
vIL-10 was first reported in ORFV found to shares 

the remarkable functional similarity to ovine IL-10 
at its C-terminal [9]. Similarly, virokine IL-10 has 
a suppressive effect on other cytokines that have 
inflammatory, antiviral, and other defensive roles [55]. 
ORF127 encodes the vIL-10 gene early in the infection 
from the right end of the genome, which plays a vital 
role in the establishment of virus infection. Both the 
IL-10R1 and IL-10R2 receptors are necessary for the 
activity of vIL-10 [56]. Recombinant ORFV having 
a deletion of ORF127 demonstrated the reduction in 
virulence and attenuation of the virus [57]. Sequence 
analysis of the vIL-10 gene from various species has 
suggested the variation in its amino-terminal, while 
the carboxy terminus of the gene was found to be 
conserved and responsible for virulence activity [58]. 
Low GC content of viral interleukin-10 gene, in 
contrast to the high GC content of ORFV genome 
and marked homology at its C-terminal to ovine IL-
10 than to other viral IL-10 supports the findings that 
the gene is acquired from the host [59]. The DNA 
sequence of ORFV-IL-10 was found to have many 
synonymous substitutions from its host counterpart, 
which indicates the horizontal transfer of a gene 
from the host and evolutionary changes adapted by 
the ORFV [9]. Alternatively, other members of the 
genus PPV possess the amino-acid identity to the 
gene from their host counterparts, not to ORFV, 
indicating the independent horizontal transfer of 
the gene from specific hosts [60]. Other poxviruses 
like Yatapoxvirus and Capripoxvirus possess IL-24 
encoding gene, an IL-10 family member [61, 62]. 
A report from Rajasthan, India stated that vIL-10 
from the skin scab of PPV infected camel (Camel 
contagious ecthyma) resembles more closely to 
Pseudocowpoxvirus of cattle than ORFV of sheep 
based on sequence analysis, revealing the transfer of 
the virus from cattle to camel [58].

Viroceptors of ORFV: GM-CSF and IL-2 inhibitory 
factor (GIF) and Chemokine binding protein (CBP)
Poxviruses encode several proteins which challenges 
the chemokine mediated inflammatory response of 
host cell [63]. ORFV encodes two genes responsible 
for binding the important chemokines in the infected 
cells and disrupting their biological function to 
protect the cells. GIF, is encoded by ORF117 gene of 
PPVs only and binds two chemokines viz. GM-CSF 
and IL-2. The two cytokines are completely different 
in their binding domains [64]. CBP, an early 2.5A° 
soluble protein is encoded by ORF112 and is also 
present in other PPVs and members of the family 
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[65, 66]. Chemokine-binding proteins inhibit host 
chemokine trafficking, especially of dendritic cells 
and monocytes to the infected cells and don’t possess 
any similarity to any of the host proteins [67-69]. This 
is one of the reasons why adaptive immunity doesn’t 
take a full hand in the case of ORFV. The two genes 
share high homology indicating duplication of the 
gene during evolution [9]. GIF activity corresponds 
to the WSXWS-like motif, which is responsible for 
dimer and tetramer formations, i.e. its functional state 
[70]. Conserved cysteine residues form disulfide bond 
important for maintaining tertiary structure of the 
protein, essential for binding to cytokines [71]. The 
functional activity of BPSV-ORF117 was found to 
be deviated from others, indicating more relatedness 
of ORFV and PCPV than BPSV [72]. The receptors 
of human and murine GM-CSF and IL-2 have been 
cloned and characterized, but these don’t share any 
similarity to the ORFV-GIF [73]. The ORFV-GIF 
binds only the ovine GM-CSF and IL-10, which 
emphasizes its adaptation to its particular hosts.

An analysis of the sequence of vCBP shows more 
similarity to GIF (GM-CSF and IL-2 inhibitory 
factor) than type-2 CC-chemokine binding protein 
family, indicating the evolution from the same 
ancestral gene [74]. The gene is conserved within the 
genus with a varied percentage of identity but shares 
low identity with other poxviruses CBP [9]. Recently, 
infection studies conducted based on the deletion 
mutants of CBP, wild type (wt) ORFV and revertant 
virus were carried out in sheep to prove its role in 
virulence, pathogenesis and host response [75]. Hence, 
the recombinants may prove as good subunit vaccine 
candidate as significant change in antibody response 
was observed for knock-out ORFV than  wt  and 
revertant virus.GIF and CBP are important virulence 
factors of ORFV, distantly related to the 35kDa 
protein family. GIF is a highly conserved gene of 
PPVs and possesses the ‘WDPWV’ and SUSHI 
domain. The SUSHI/CCP/SCR domain is basically a 
conserved protein domain with a structure consisting 
of a protein loop within another loop. CBP possesses 
high variations among ORFV as well as other 
poxviruses. For the first time, the presence of SUSHI 
domain in GIF gene of ORFV isolates from India has 
been reported [76].

Orf virus induced immunity in host 
ORF011 and ORF059 encoded proteins are 
immunodominant and responsible for inducing 

immune response [77]. However, few and weak 
neutralizing antibodies are found in serum of infected 
animals. Neutrophils, natural killer cells, dendritic 
cells are observed to in infected cells after infection 
and a rush of cytokine has also been observed [78]. 
Similarly, Th1 response was found to comparatively 
confer strong cell-mediated immunity.Also, MHC-
II+ dendritic cells population was observed in PPOV 
infected sheep [79]. However, the clear picture of 
immunity development is not clear till date, and need 
a specified stage-wise in-vivo experimental study to 
clear innate as well adaptive immunity phases of the 
disease. Biggest challenge is escaping the immunity 
developed and re-infecting the same host. Most 
probable reason is these virulence factors that help the 
virus to manipulate the immune environment of host 
cell. The re-infection is the major problem faced by 
livestock health sector to control this disease.

Applications of ORFV 

Firstly, the Poxviruses have always played an important 
role as vaccine vectors viz. modified VACV Ankara 
(MVA), fowlpoxvirus, canarypoxvirus, and now the 
ORFV [80]. A Vero-cell culture adapted attenuated 
strain/apathogenic ORFV-D1701-V strain has been 
proved itself as an efficient immunomodulatory 
virus vector to develop recombinants via replacing 
VEGF-E gene with an insert often referred as an 
inactivated Parapoxvirusovis (iPPVO). VEGF-E 
is the most important gene in orf virulence and 
thereby this replacement subsequently reduces the 
disease pathogenicity.This vector has been used to 
develop vaccines against many diseases in the last 
two decades. Pseudorabies virus (PRV) glycoproteins 
gC and gD based ORFV-D1701 vector vaccine 
have shown both humoral and cellular immunity 
against natural infection in mice [81]. Another 
example of recombinant iPPVO as vector vaccine 
replacing VEGF-gene by rabies virus G glycoprotein 
successfully mounted protective immunity against 
lethal challenge infection in mice [82].

Also, iPPVO expressing PRV-gC and gD is used as 
booster dose for activation of strong immunity and 
found to be more efficient than other prime-boost 
regimens [83, 84]. Also, iPPVO plays a key role as 
antiviral immunotherapeutic against Herpes simplex 
virus, Hepatitis B virus, rabbit haemorrhagic disease 
and etc[85, 86]. This has been used to track the 
immune response by the host cell against iPPVO. A 
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complex cytokine response from different immune 
cells including both Th1-related (IL-12, IL-18, 
IFN-ɣ) and Th2-regulatory cytokines (IL-4) was 
demonstrated in Equine, mice, and rats, in-vivo 
[87-90]. Also, the iPPVOinduces the secretion of 
IFN-α and–β by dendritic cells via TLR-independent 
pathways [91]. Human peripheral cells have also 
been showing induction of Th-1 cell and monocyte-
related cytokines [92]. Even in non-permissive cells, 
canine polymorphonuclear cells (in-vitro), iPPVO 
induction demonstrated an enhanced phagocytic 
activity, MHC-II upregulation, and CD4+ T-cell 
proliferation, and oxidative burst in monocytes [93]. 
The immunostimulating effect of this inactivated 
ORFV expressing H5 has proved to protect against 
high pathogenic strains of avian influenza H5N1 
and H1N1 in mice [94, 95]. Whereas, a study shows 
iPPVO co-culture with Equine Herpes virus-1 and 
4 does not affect the viral proliferation and increased 
IL-10 mRNA and multi-cytokine expression [96].
Secondly, ORFV has joined the legacy of poxviruses 
as a potent oncolytic virus candidate for cancer 
biotherapyand has shown remarkably pronounced 
effects in murine cancer models [97]. They are widely 
accepted because of skin tropism, strong induction of 
innate immunity at the infection site, and no systemic 
invasion. IFN-ɣ and IL-10 induction by iPPVO 
directs the study towards its anti-fibrotic therapeutic 
approach and found to exercise it successfully in 
pre-established liver fibrosis in rat models [98]. Its 
widening applications have also touched the acaricidal 
therapy to treat canine generalized demodicosis via 
the combination of amitraz and iPPVO and provide 
faster recovery than amitraz alone [99]. This non-
specific immunomodulator is also found to be effective 
in equine respiratory diseases when used along with 
Propionibacterium acnes [100].

By modulating the immune response of the host, some 
of the genes have been used as therapeutic agent for 
certain important inflammatory diseases. Synthetically 
produced VEGF using recombinant DNA technology 
can be used in conditions like hypoxia to restore the 
oxygen supply to tissues when blood circulation is 
inadequate and also to provide nutrient supply to 
regenerate the affected cell [101].The synergistic effect 
of ORFV-VEGF and IL-10 immunomodulatory 
proteins has been studied to treat wounds in a murine 
model recently, resulting in the expected outcome 
of enhanced wound closure, re-vascularisation, 
re-epitheliasation and less wound scarring [102]. 

Rabies virus G and M protein based VLP containing 
membrane anchored immunostimulatory molecule, 
GM-CSF, induces enhanced immunogenicity and 
100% protection against wild type virus [103]. 
MOR103 drug is available to control high levels of 
GM-CSF found in joints with rheumatoid arthritis 
[104]. Likewise, pathogenesis behind diseases like 
psoriasis itching involved, due to over-expression of 
IL-2 can be controlled. The IL-2 used as therapeutic 
agent has been also known to determine the severity 
of the side effects [105], therefore in these cases also 
GIF can be used effectively.

Conclusions and Recommendations

Earlier, orf virus was known only as an entity causing 
mild self-limiting disease of sheep and goats. Later, its 
varied range of virulence factors, re-infection causing 
ability, and widening host range to wild animals 
gained the attraction of researchers to study the virus 
and its genome in more detail. Some of the important 
virulence factors are known to acquire from their 
respective hosts via horizontal gene transfer namely 
VEGF, IL-10, PACR etc for utilizing them against 
host defense mechanism. Ironically, the same genes 
can be used by certain manipulations for our benefits. 
VEGF is the most studied virulence factor of ORFV, 
followed by GIF, CBP and vIL-10 and they have been 
proved as potential candidates as biotherapeutics.
Other virulence factors like dUTPase, VIR, apoptosis 
inhibitor, NF-kB inhibitors are still at the primary 
stage of study after being noticed in the genome 
of ORFV. The virus has evolved through many 
adaptations to ensure its presence in the environment 
and host. In the last decade, various uses of ORFV 
have been studied extensively as viral vector for other 
important diseases, bio-therapeutic for medical 
important diseases like cancer. We need to keep up 
our ability to fight against these small entities and 
maintain the balance of ecology.
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