

Research Article

Status of Micro Mineral Deficiency in Cattle in Kashmir Valley

Mohd. Iqbal Yatoo^{1*}, Umesh Dimri², Mahesh Chandra Sharma³

^{1, 2}Division of Medicine, IVRI, Izatnagar, Barielly, U.P.-243122, ³ICAR, HQ New Delhi-110114 *Corresponding author: iqbalyatoo@gmail.com

ARTICLE HISTORY ABSTRACT

Received: 2013-03-26	The main objective of the present study was to evaluate the prevalence of micro mineral deficiency
Revised: 2013-07-21	in soil, fodder and cattle of Kashmir valley. For this purpose 200 soil samples, 232 fodder samples
Accepted: 2013-07-23	and 136 serum samples from cattle were collected from three districts of Kashmir valley viz.
	Budgam, Pulwama and Srinagar. Micro mineral estimation was done by atomic absorption
	spectrophotometry in Clinical Medicine Laboratory at IVRI. Overall prevalence of copper, iron,
Key Words: micromineral,	zinc and cobalt deficiency in soil was 23.50%, 14.50%, 38.00% and 24.00% respectively. Mean
prevalence, cattle, Kashmir	prevalence of copper, iron, zinc and cobalt deficiency in fodder was 24.13%, 17.67%, 34.05% and
L · ·	24.13% respectively. Mean prevalence of copper, iron, zinc and cobalt deficiency in cattle was
	34.55%, 16.17%, 38.97% and 24.26% respectively. Among cattle, calves showed higher copper
	(46.42%) deficiency whereas pregnant cattle showed higher zinc (44.73%) and cobalt (31.57%)
	deficiency. Iron deficiency was lower in all groups (16.17%). From this study it can be concluded
	that the cattle of Kashmir valley are predisposed to mineral deficiency. Hence supplementation of
	cattle with mineral supplements is imperative under prevailing feeding systems.
	All copyrights reserved to Nexus® academic publishers
ARTICLE CITATION: Vatoo	ML Dimri LL Sharma MC (2013) Status of micro mineral deficiency in cattle in kashmir valley. I Anim

ARTICLE CITATION: Yatoo MI, Dimri U, Sharma MC (2013). Status of micro mineral deficiency in cattle in kashmir valley. J Anim. Health Prod. 1 (3): 24 – 28.

INTRODUCTION

Livestock health and production are dependent on the quality and quantity of nutrients present in the feed and fodder and the soil in which these fodders are grown. A deficiency or imbalance in either may render animal inefficient both in health and production. Mineral disorders severely inhibit grazing livestock health and production in developing tropical countries and are often of significant consequences than are the infectious diseases (Mc Dowell, 1985). Micro mineral imbalances and deficiencies have been increasingly implicated in health problems of dairy animals (Sharma *et al.*, 2003). Mineral deficiency is an area specific problem (McDowell, 1985). In our country micro mineral deficiency status has been evaluated in different states (Sharma *et al.*, 2003 and 2006, Kumar *et al.*, 2004) but such study is lacking in Kashmir valley.

MATERIALS AND METHODS

Three blocks from each of the three districts of Kashmir valley viz Budgam (Chadoora, Chrari-Sharief, Khansahab), Pulwama

(Pulwama, Pampore, Kaka Pora) and Srinagar (west, south and central zone), were selected. Soil samples (n=200) were collected with the help of auger, up to 15 cm depth. Collected soil samples were dried for overnight in hot air oven at temperature 100±5°C. The samples were ground and stored in airtight polythene packets to analyze mineral content. Various fodder samples (n=232) that were being fed to animals were collected and fodder sample were collected from the same field where soil samples were taken. These included paddy straw, wheat straw, rice bran, wheat bran and mustard oil cake,. Collected fodder samples were dried in a hot air oven at temperature 100±5°C overnight ground and stored in airtight polythene packets for laboratory analysis. During the survey blood samples (n=136) were collected from cattle (Table 1). The detail of blood samples distribution has been given in Table 2.

From jugular vein about 10 ml blood was collected by Teflon needle in a sterilized test tube without any anticoagulant. Tubes containing blood were kept at room temperature (20°–22°C). Clot appeared within 2 h and that was broken with the help of pasteur pipette within one hour. Serum ed from three districts of Kashmir valley.

|--|

District	Block	No. of samples		
		Soil	Fodder	Blood/serum
	Chadoora	30	48	16
Budgam	Chrari-sharief	20	24	19
-	Khansahab	20	12	16
	Pulwama	25	48	17
Pulwama	Pampore	20	16	18
	Kaka Pora	20	24	12
	West zone	20	16	14
Srinagar	South zone	25	28	10
	Central zone	20	16	14
Total		200	232	136

Table 2: Showing number of blood samples collected from three districts of the Kashmir valley.

Districts	Block	Cattle					
		Pregnant	Non Pregnant	Heifer	Calf		
Budgam	Chadoora	6	3	4	3		
	Chrari-sharief	5	6	5	3		
	Khansahab	3	5	4	4		
Pulwama	Pulwama	5	3	6	3		
	Pampore	6	4	4	4		
	Kaka Pora	3	4	3	2		
Srinagar	West zone	4	4	2	4		
	South zone	2	3	2	3		
	Central zone	4	4	4	2		
Total		38	36	34	28		

was collected with the help of a micropipette. Centrifugation of serum was performed and it was stored in refrigerator at-4°C in labeled glass vials. Soil samples were digested as per Franeck (1992). The fodder samples were digested as per Trolson (1969). Serum samples were digested as per procedure described by Kolmer *et al.* (1951). While digestion of the soil, fodder and serum samples, simultaneous digestions of reagent blanks were also undertaken and the final volume was similarly made to 10 ml to have blank. For the estimation of minerals in the samples atomic absorption spectrophotometer (AAS) was used. Mineral sample concentration was expressed in ppm and minimum 3 standards of known concentration were used for calibration after that unknown samples were analyzed. The percent prevalence was calculated using reported critical values of corresponding minerals in soils, fodder and animal (cattle).

RESULTS AND DISCUSSION

Overall prevalence of copper, iron, zinc and cobalt deficiency in soil was 23.50%, 14.50%, 38.00% and 24.00% respectively (Table 3). Sharma *et al.* (2003) reported a prevalence deficiency

of 55.26%, 6.9%, 59.12% and 7.89% of Cu, Co, Zn and Fe respectively, in soil. Lowest prevalence of copper deficiency was observed in Chari-sharief and west zone of Srinagar (15% in each) and the highest in Pulwama and south zone of Srinagar (28% in each). Prevalence of iron deficiency is highest in Khansahab (20%) and west zone (20%) of Srinagar and lowest in Pulwama (8%). Singh (1998) reported that 51.2% soil samples were deficient in zinc in north India. Prevalence of zinc deficiency is highest in Chari-Sharief and Kaka Pora (45% each) and lowest in central zone of Srinagar (30%). Ahmed et al. (2005) and Kirmani et al. (2006) reported that the soils under rice cultivation in Srinagar and Anantnag district have low to marginally low Zn content. The prevalence of cobalt deficiency was observed highest in west and central zone of Srinagar (30%) and lowest in south zone of Srinagar (16%). Sarkar et al. (1990) and Kumar et al. (2004) have also reported similar results.

Mean prevalence of copper, iron, zinc and cobalt deficiency in fodder was 24.13%, 17.67%, 34.05% and 24.13% respectively (Table 4). These findings are in corroboration with Sharma *et al.* (2003) who reported prevalence deficiency of

Table 3: Prevalence of soil minerals deficiency (%) in various districts of Kashmir valley.

Districts	Block	No. of samples	Cu	Fe	Zn	Со
Budgam	Chadoora	30	8/30(27)	5/30(17)	10/30(33)	7/30(23)
	Chrari-sharief	20	3/20(15)	3/20(15)	9/20(45)	5/20(25)
	Khansahab	20	5/20(25)	4/20(20)	7/20(35)	4/20(20)
Pulwama	Pulwama	25	7/25(28)	2/25(8)	11/25(44)	6/25(24)
	Pampore	20	5/20(25)	3/20(15)	7/20(35)	5/20(25)
	Kaka Pora	20	4/20(20)	2/20(10)	9/20(45)	5/20(25)
Srinagar	West zone	20	3/20(15)	4/20(20)	7/20(35)	6/20(30)
	South zone	25	7/25(28)	3/25(12)	10/25(40)	4/25(16)
	Central zone	20	5/20(25)	3/20(15)	6/20(30)	6/20(30)
Overall prevalence		200	47/200 (23.50)	29/200 (14.50)	76/200 (38.00)	48/200 (24.00)

^{*}Values in the parenthesis indicate prevalence (%)

Table 4: Prevalence of fodder mineral deficiency (%) in various districts of Kashmir valley.

Districts	Block	No. of samples	Cu	Fe	Zn	Со
Budgam	Chadoora	48	14/48(29)	6/48(13)	17/48(35)	11/48(23)
0	Chrari-sharief	24	5/24(21)	5/24(21)	8/24(33)	6/24(25)
	Khansahab	12	2/12(17)	5/12(41)	2/12(17)	3/12(25)
Pulwama	Pulwama	48	13/48(27)	4/48(8)	18/48(38)	13/48(27)
	Pampore	16	3/16(19)	4/16(25)	6/16(37)	3/16(19)
	Kaka Pora	24	5/24(21)	5/24(21)	8/24(33)	6/24(25)
Srinagar	West zone	16	3/16(19)	6/16(37)	2/16(13)	5/16(31)
_	South zone	28	8/28(29)	4/28(14)	11/28(39	5/28(18)
	Central zone	16	3/16(19)	2/16(13)	7/16(44)	4/16(25)
Mean		232	56/232 (24.13)	41/232 (17.67)	79/232 (34.05)	56/232 (24.13)

Values in the parenthesis indicate prevalence (%)

60.64%, 6.7%, 61.22% and 11.37% of Cu, Co, Zn and Fe respectively, in fodder. The prevalence of copper deficiency was recorded highest in Chadoora and south zone of Srinagar (29% each) and lowest in Khansahab (17%). The highest prevalence was observed in Khansahab (41%) and lowest in Pulwama (8%). Prevalence of zinc deficiency in fodder was highest in central zone (44%) and lowest in west zone of Srinagar (13%). Ahmed *et al*, (2005) reported zinc deficiency but adequate copper, iron and manganese in fodders in Anantnag district of Kashmir valley. The average value of cobalt deficiency in fodder of Kashmir valley was observed to be 24.13%. The highest was observed in west zone (31%) and lowest in south zone (18%) of Srinagar. Tiwari *et al.* (2007) and Kumaresen *et al.* (2010) have also reported mineral deficiency in fodder in hilly areas.

Mean prevalence of copper, iron, zinc and cobalt deficiency in cattle was 34.55%, 16.17%, 38.97% and 24.26% respectively.

Similar findings were made by Das et al. (2009) and Kumar et al. (2008). Highest overall prevalence of copper deficiency in cattle was observed in Chadoora (43.75%) and lowest in Khansahab (18.75%). Highest prevalence was observed pregnant cattle of central zone of Srinagar (75%) and lowest in Pampore (16.16%). Sharma et al. (2009) have reported similar results. Highest prevalence was observed in non-pregnant cattle of Pampore and west zone of Srinagar, 50% each and lowest in that of Chrarisharief (16.66%). Heifers in Kaka Pora showed highest prevalence (66.6%) while those in Pulwama showed lowest prevalence of 16.6%. Chadoora, Chrari-sharief and Pulwama recorded a prevalence of 66.66% each in calves where as Pampore, west zone and central zone recorded a prevalence of 50%. Khansahab recorded lowest 25% and south zone of 33.33% prevalence (Table Srinagar recorded 5)

Table 5: Prevalence of copper deficiency (%)	in Cattle in various districts of Kashmir valley
--	--

Districts	Block		Cat	ttle		
		Pregnant	Non	Heifer	Calf	Overall deficiency
		-	pregnant			
Budgam	Chadoora	3/6(50)	1/3(33.3)	1/4(25)	2/3(66.6)	7/16(43.75)
	Chrari-sharief	2/5(40)	1/6(16.16)	1/5(20)	2/3(66.6)	6/19(31.57)
	Khansahab	1/3(333)	1/5(20)	0/4(Nil)	1/4(25)	3/16(18.75)
Pulwama	Pulwama	2/5(40)	1/3(33.3)	1/6(16.6)	2/3(66.6)	6/17(35.29)
	Pampore	1/6(16.16)	2/4(50)	1/4(25)	2/4(50)	6/18(33.33)
	Kaka Pora	1/3(33.3)	1/4(25)	2/3(66.6)	0/2(Nil)	4/12(33.33)
Srinagar	West zone	1/4(25)	2/4(50)	0/2(Nil)	2/4(50)	5/14(35.14)
	South zone	1/2(50)	0/3(Nil)	1/2(50)	1/3(33.33)	3/10(30)
	Central zone	3/4(75)	1/4(25)	2/4(50)	1/2(50)	7/14(50)
Mean		15/38(39.47)	10/36(27.77)	9/34(26.47)	13/28(46.42)	47/136(34.55)

*Values in the parenthesis indicate prevalence (%).

Block	Cattle					
	Pregnant	Non pregnant	Heifer	Calf	Overall deficiency	
Chadoora	1/6(16.16)	1/3(33.33)	0/4(Nil)	0/3(Nil)	2/16(12.5)	
Chrari-sharief	1/5(20)	1/6(16.66)	1/5(20)	0/3(Nil)	3/19(15.72)	
Khansahab	0/3(Nil)	0/5(Nil)	1/4(25)	1/4(25)	2/16(12.5)	
Pulwama	1/5(20)	1/3(33.33)	1/6(16.16)	1/3(33.3)	4/17(23.52)	
Pampore	1/6(16.66)	0/4(Nil)	0/4(Nil)	1/4(25)	2/18(11.11)	
Kaka Pora	1/3(33.3)	0/4(Nil)	0/3(Nil)	0/2(Nil)	1/12(8.33)	
West zone	0/4(Nil)	1/4(25)	0/2(Nil)	1/4(25)	2/14(14.28)	
South zone	1/2(50)	1/3(33.33)	1/2(50)	0/3(Nil)	3/10(30)	
Central zone	1/4(25)	0/4(Nil)	1/4(50)	1/2(50)	3/14(21.45)	
	7/38(18.42)	5/36(13.88)	5/34(14.70)	5/28(17.85)	22/136(16.17)	
	Chadoora Chrari-sharief Khansahab Pulwama Pampore Kaka Pora West zone South zone Central zone	Pregnant Chadoora 1/6(16.16) Chrari-sharief 1/5(20) Khansahab 0/3(Nil) Pulwama 1/5(20) Pampore 1/6(16.66) Kaka Pora 1/3(33.3) West zone 0/4(Nil) South zone 1/2(50) Central zone 1/4(25)	Pregnant Non pregnant Chadoora 1/6(16.16) 1/3(33.33) Chrari-sharief 1/5(20) 1/6(16.66) Khansahab 0/3(Nil) 0/5(Nil) Pulwama 1/5(20) 1/3(33.33) Pampore 1/6(16.66) 0/4(Nil) Kaka Pora 1/3(33.3) 0/4(Nil) West zone 0/4(Nil) 1/4(25) South zone 1/2(50) 1/3(33.33) Central zone 1/4(25) 0/4(Nil) 7/38(18.42) 5/36(13.88)	Pregnant Non pregnant Heifer Chadoora 1/6(16.16) 1/3(33.33) 0/4(Nil) Chrari-sharief 1/5(20) 1/6(16.66) 1/5(20) Khansahab 0/3(Nil) 0/5(Nil) 1/4(25) Pulwama 1/5(20) 1/3(33.33) 1/6(16.16) Pampore 1/6(16.66) 0/4(Nil) 0/4(Nil) Kaka Pora 1/3(33.3) 0/4(Nil) 0/3(Nil) West zone 0/4(Nil) 1/4(25) 0/2(Nil) South zone 1/2(50) 1/3(33.33) 1/2(50) Central zone 1/4(25) 0/4(Nil) 1/4(50) 7/38(18.42) 5/36(13.88) 5/34(14.70)	Pregnant Non pregnant Heifer Calf Chadoora 1/6(16.16) 1/3(33.33) 0/4(Nil) 0/3(Nil) Chrari-sharief 1/5(20) 1/6(16.66) 1/5(20) 0/3(Nil) Khansahab 0/3(Nil) 0/5(Nil) 1/4(25) 1/4(25) Pulwama 1/5(20) 1/3(33.33) 1/6(16.16) 1/3(33.3) Pampore 1/6(16.66) 0/4(Nil) 0/4(Nil) 1/4(25) Kaka Pora 1/3(33.3) 0/4(Nil) 0/3(Nil) 0/2(Nil) West zone 0/4(Nil) 1/4(25) 0/2(Nil) 1/4(25) South zone 1/2(50) 1/3(33.33) 1/2(50) 0/3(Nil) Central zone 1/4(25) 0/4(Nil) 1/4(50) 1/2(50) 7/38(18.42) 5/36(13.88) 5/34(14.70) 5/28(17.85)	

Values in the parenthesis indicate prevalence (%).

Table 7: Prevalence of zinc deficiency (%) in Cattle in various districts of Kashmir valley.*

Districts	Block	Cattle					
		Pregnant	Non pregnant	Heifer	Calf	Overall deficiency	
Budgam	Chadoora	4/6(33.33)	1/3(33.33)	1/4(25)	2/3(66.66)	8/16.(50)	
	Chrari-sharief	3/5(60)	2/6(33.33)	2/5(40)	1/3(33.33)	8/19(42.10)	
	Khansahab	2/3(66.66)	4/5(80)	2/4(50)	1/4(25)	9/16(56.25)	
Pulwama	Pulwama	2/5(40)	1/3(33.3)	1/6(16.66)	1/3(33.3)	5/17(29.42)	
	Pampore	1/6(16.16)	1/4(25)	2/4(50)	1/4(25)	5/18(27.77)	
	Kaka Pora	1/3(33.3)	1/4(25)	1/3(33.33)	0/2(Nil)	3/12(25)	
Srinagar	West zone	1/4(25)	1/4(25)	0/2(Nil)	1/4(25)	3/14(21.42)	
	South zone	1/2(50)	1/3(33.33)	1/2(50)	1/3(33.33)	4/10(40)	
	Central zone	2/4(50)	3/4(75)	3/4(75)	0/2(Nil)	8/14(57.14)	
Mean		17/38(44.73)	15/36(41.66)	13/34(38.23)	8/28(28.57)	53/136(38.97)	

Values in the parenthesis indicate prevalence (%)

Districts	Block	Cattle					
		Pregnant	Non pregnant	Heifer	Calf	Overall deficiency	
Budgam	Chadoora	3/6(50)	1/3(33.33)	0/4(Nil)	1/3(33.33)	5/16(31.25)	
	Chrari-sharief	2/5(40)	2/6(33.33)	1/5(20)	2/3(66.66)	7/19(36.84)	
	Khansahab	1/3(33.33)	0/5(Nil)	0/4(Nil)	1/4(25)	2/16(12.55)	
Pulwama	Pulwama	0/5 (Nil)	0/3(Nil)	0/6(Nil)	2/3(66.66)	2/17(11.76)	
	Pampore	5/6(83.33)	1/4(25)	0/4(Nil)	1/4(25)	7/18(38.88)	
	Kaka Pora	0/3(Nil)	0/4(Nil)	1/3(33.33)	1/2(50)	2/12 (16.66)	
Srinagar	West zone	1/4(25)	0/4(Nil)	0/2(Nil)	2/4(50)	3/14(21.42)	
	South zone	0/2(Nil)	0/3(Nil)	0/2(Nil)	1/3(33.33)	1/10(10)	
	Central zone	0/4(Nil)	2/4(50)	1/4(25)	1/2(50)	4/14(28.75)	
Mean		12/38(31.57)	6/36(16.66)	3/34(8.88)	12/28(17.85)	33/136(24.26)	

Table 8: Prevalence of cobalt deficiency (%) in Cattle in various districts of Kashmir valley.

^{*}Values in the parenthesis indicate prevalence (%)

Highest overall prevalence of iron deficiency in cattle was observed in south zone of Srinagar (30%) and lowest in Kaka Pora (8.33%). Similar results were noted by Sharma et al. (2009). Highest prevalence was observed in pregnant cattle of South-zone (50%) and lowest in Chadoora and Pampore (16.6% each). Chadoora, south zone of Srinagar and Pulwama recorded a prevalence of 33.33% each in non-pregnant cattle where as Chrari-sharief and west zone of Srinagar recorded a prevalence of 25% and 16.66% respectively (Table 6). Highest prevalence was observed in heifers of central and south zone of Srinagar (50% each) and lowest in Pulwama 16.66%. Calves of central zone of Srinagar recorded a prevalence of 50% while those in Pulwama recorded 33.3%. In Khansahab, Pampore and west zone of Srinagar prevalence recorded was 25%. Das et al. (2009) and Kumar et al. (2008) have also reported iron deficiency in cattle.

Highest overall prevalence of zinc deficiency in cattle was observed in south zone of Srinagar (57.14) and lowest in west zone of Srinagar (21.42%). Sharma *et al* (2009) have also reported higher zinc deficiency in cattle. Highest prevalence was observed pregnant cattle of Khansahab (66.6%) and lowest in Pampore (16.16%). In Khansahab highest prevalence (80%) was observed in non-pregnant cattle where as west zone of Srinagar, Kaka Pora and Pampore recorded a prevalence of 25% each (Table 7). Heifers of Central zone of Srinagar recorded a highest prevalence of 75% while those in Pulwama recorded a lowest of 16.66%. Highest prevalence was observed in calves of Chadoora (66.66%) where as in Pampore, Khansahab and west zone of Srinagar recorded 25% each. Similar findings were made by Das *et al.* (2009) and Kumar *et al.* (2008).

Highest overall prevalence of cobalt deficiency in cattle was observed in Pampore (38.88%) and lowest in south zone of Srinagar (10%). Similar reports were made by Kumaresan *et al.* (2010). Pregnant cattle of Pampore recorded highest prevalence (83.33%) while that of west zone of Srinagar was lowest (25%). Central zone of Srinagar recorded highest prevalence (50%) in non-pregnant cattle where as Pampore recorded lowest (25%). Chari-Sharief, Central zone of Srinagar and Kaka Pora recorded a prevalence of 20% 33.33% and 25% respectively in heifers (Table 8). In district Budgam, Chari-Sharief (66.66%), recorded highest followed by Chadoora (33.33%) and Khansahab (25%) in calves. These findings are in corroboration of the findings of Das *et al.* (2009) and Kumar *et al.* (2008).

Thus, in the present study higher prevalence of zinc, copper and cobalt deficiency may be attributed to deficiency of micro minerals in fodder samples which were severely deficient in zinc, marginally deficient in copper and cobalt while iron content was adequate to high. This in turn may be attributed to deficient status of zinc, copper and cobalt in soil of the region as mineral content in plants depends on soil type, plant species, and stage of maturity, pasture management and agro-climatic conditions (Mc Dowell, 1985, Underwood and Suttle, 2001). Besides higher prevalence deficiency of copper (46.42%) in calves and zinc (44.73%) and cobalt (31.57%) in pregnant cattle may be due to the variation of micro mineral requirement in different groups of cattle (Spears, 2011). Similar findings were made by Sharma *et al.* (2004, 2006) and Khan *et al.* (2007). Iron deficiency was lower in all groups which may be due to the availability of adequate amount of iron in the soil and fodder (Yatoo *et al.*, 2011).

CONCLUSION

Based on the present findings it can be concluded that the cattle of Kashmir valley are predisposed to micro mineral deficiency under the prevailing feeding system. Hence supplementation of cattle with mineral supplements is imperative.

ACKNOWLEDGEMENT

Authors are thankful to the Director, IVRI for providing all the necessary requirements for this research. Thanks are also due to staff of the Clinical Medicine Laboratory, Division of Medicine, IVRI.

REFERENCES

- Ahmed Z, Ali T, Shahid A and Kirmani N A (2005). Correlation studies on micronutrients cations with soil properties of apple orchard of Kashmir. Indian J. Horticult. 62(4): 391-93.
- Das G, Sharma MC, Joshi C and Rupasi T (2009). Status of soil, fodder and serum (cattle) mineral in high rainfall area of NE region. Ind. J. Anim. Sci. 79(3): 306-310.
- Francek MA (1992). Soil lead value in small town environment. A case study from Mt. Pleasant Michigam. *Environmental Pollution*. **76**: 251–57.
- Khan ZI, Ahmad MAK, Mustafa I and Danish M (2007). Evaluation of micro minerals composition of different grasses in relation to livestock requirements. Pak. J. Bot. 39(3): 719-728.
- Kirmani NA, Ali T, Ahmad J and Wani M A (2006). Effect of different levels of zinc and phosphrous on dry matter, N, K and S uptake of rice in Alluvial soils of Kashmir. SKUAST-J, Res. 8: 53-57.
- Kolmer JA, Spanbling EH and Robinson HW (1951). Approved Laboratory Techniques. Appleton Century Crafts New York.
- Kumar P. Sharma MC, Joshi C, Saxena N and Dwivedi P (2004). Prevalence of micro-mineral deficiencies in soil fodder and cattle of Lucknow region and status of vitamin and reproductive steroids. Ind. J. Vet. Path. 28(1): 47-50.
- Kumar R, Sharma KB, Sharma M and Sharma R (2008). Mineral status of livestock of Shivalik hill zone of Himachal Pradesh. Ani. Nutr. Feed Tech. 8: 253-257.
- Mc Dowell LR (1985). Nutrition of Grazing Ruminants in Warm Climates. Academic Press. Orlando Florida.
- Kumaresan A, Bujarbaruah KM, Pathak KA, Brajendra and Ramesh T (2010). Soil-plant-animal continuum in relation to macro and micro mineral status of dairy cattle in subtropical hill agro ecosystem. *Trop Anim Health Prod.* 42:569–577
- Sarkar S, Mishra SK. and Das SK (1990). Soil-plant-animal relationship in respect of micro-nutrient in anaemic black bengal goats. *Indian J. Anim. Hlth.* 23: 59-64.

- Sharma MC and Joshi C (2004). Soil fodder and serum micro mineral status and haematobiochemical profile in cattle of Garhwal region of Uttaranchal state. *Ind. J. Anim. Sci.*, **74**: 775-779.
- Sharma MC, Joshi C and Das G (2009). Soil, fodder and serum mineral (cattle) and haematobiochemical profile in some districts of Central Uttar Pradesh. Indian Journal of Animal Sciences. 79 (4): 411–415.
- Sharma MC, Kumar P, Joshi C and Kaur H (2006). Status of Serum Minerals and Biochemical Parameters in Cattle of Organized Farms and Unorganised Farms of Western Uttar Pradesh. Asian J. Ani. Vet. Adv. 1: 33-41.
- Sharma MC, Raju S, Joshi C, Kaur H and Varshney VP (2003). Studies on Serum Micro-mineral, hormone and vitamin profile and its effect on production and therapeutic management of buffaloes in Haryana state of India. Asian-Aust. J. Anim. Sci. 16(4): 519-528.
- Singh MV (1998). Decade of research. Bhopal: Indian Institute of Soil Science. In: Gupta U. C. Wu K. and Liang S. (2008). Micronutrients in Soils, Crops, and Livestock. *Earth Science Frontiers*, **15** (5): 110-125.

- Spears JW (2011). Role of Mineral and Vitamin Status on Health of Cows and Calves. WCDS Advances in Dairy Technology. 23: 287-297.
 Tiwary MK, Tiwari DP, Mondal BC and Kumar A (2007). Macro and micro
- Tiwary MK, Tiwari DP, Mondal BC and Kumar A (2007). Macro and micro mineral profile in soil, feeds and animals in Haridwar district of Uttarakhand. Ani. Nutr. Feed Tech. 7: 187-195.
- Trolson JE (1969). Outline for in vitro Digestion of Forage Samples. Research station swift current, Saska Chawn, Canada.
- Underwood EJ and Suttle NF (2001). The mineral nutrition of livestock (4th Edition). CABI Publishing, CAB International, Wallingford, U. K. Yatoo M I, Devi S, Kumar P, Tiwari R and Sharma MC (2011). Soil plant
- animal micro mineral status and their inter relation in Kashmir valley. *Ind.* J. Ani. Sci.. **81**(6): 628-630.