Research Article

Effect of Adding *Saccharomyces cerevisiae* and/or Probiotic as Dietary Supplementation in some Biochemical Traits of Local Awassi Male Lambs

HAYDER RAZZAQ ABED^{1*}, DRGHAM HAMZA AL-ZWEAN²

¹Department of Veterinary Public Health, Faculty of Veterinary Medicine, University of Kufa, Najaf; ²Department of Veterinary Public Health, Faculty of Veterinary Medicine, University of Baghdad, Iraq.

Abstract | This study was conducted to investigate the effect of *Saccharomyces cerevisiae* (SC) and / or probiotic supplementation as feed additives on some blood biochemical traits (Hemoglobin concentration(Hb), Total protein(TP), Total cholesterol(TCH), Triglycerides(TG) in local Awassi male lambs. This experiment was performed in Vet. Medicine College / Kufa University. Twenty four lambs at age of 2-3 months were randomly divided into four groups (6 each) as follows: Group(G) one (Control) was fedon concentrate diet at the rate of 2% BW with wheat straw, G2 was given 5g/head of SC mixed with diet, G3 was given 1g/head /weekly of probiotic (Biolact®), G4 was given SC and probiotic (Biolact®)mixed with diet as mentioned in G2 and G3 respectively. Blood samples were taken monthly to study the traits above. Results revealed that the G2,G3 and G4 showed significantly (P<0.05) higher than the control group in Hb values.G4 showed significantly (P<0.05) higher in TP values than other groups at last experiment. While inTCH, G4 illustrated the lowest values than other groups at all periods and alternated G2 the significantly decreasing was detected in TG values than other groups at the last two months. In conclusion: the SC and probiotic combination improved the blood biochemical traits in Awassi male lambs.

Keywords | Lambs, Probiotic, Biochemical, Supplementation, Traits.

Editor | Kuldeep Dhama, Indian Veterinary Research Institute, Uttar Pradesh, India.

Received | July 31, 2018; Accepted | October 04, 2018; Published | October 18, 2018

*Correspondence | Haydet Razzaq Abed, Department of Veterinary Public Health, Faculty of Veterinary Medicine, University of Kufa, Najaf, Iraq; Email: hayderr.alessay@uokufa.edu.iq

Citation Abed HR, Al-Zwean DH (2018). Effect of adding *Saccharomyces cerevisiae* and/or probiotic as dietary supplementation in some biochemical traits of local awassi male lambs. Adv. Anim. Vet. Sci. 6(12): 537-541.

DOI | http://dx.doi.org/10.17582/journal.aavs/2018/6.12.537.541

ISSN (Online) | 2307-8316; ISSN (Print) | 2309-3331

Copyright © 2018 Abed and Zwean. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

INTRODUCTION

The ruminants feeding were insufficient for a long period because it was founded on the quantity without the quality basis, this case leading to a very big gap between the animals requirements and feed availability. Therefore, any attempt that target to improve the production should be done through feeding system improvements. Today, the feed characterization according to their chemical composition, and the constitution of their different fragments, is the important one of the objectives of nutritionists when consist balancing rations that get nutrients for the microorganisms in the rumen to growth and development and then of the animal (Muniz et al., 2008).

Yeast item supplementation has a many advantages in ru-

December 2018 | Volume 6 | Issue 12 | Page 537

minant nutrition which have been exhibited an increase in nutrient digestibility, change of the volatile fatty acids concentration created in the rumen, lessening in ruminal ammonia, and increment of ruminal microorganism populace (Chaucheyras-Durand et al., 2008). Besides, yeast culture supplementation in growing lambs can possibly enhance feed intake and growth and can substitute antibiotic agents as growth enhancing feed additive substance (Tripathi and Karim, 2011).

Numerous investigations announced that SC addition animated change in blood parameters positively, for example, yeast supplementation resulted in better iron salt absorption from the small intestine, affecting positively hemoglobin (Hb) forming processes (Dobicki et al., 2005). Neither live yeast cultures nor dried yeast significantly affected the **OPEN OACCESS**

Advances in Animal and Veterinary Sciences

Table 1: Effect of dietary *Saccharomyces cerevisiae* and/or Probiotic supplementation in **Hb** of local Awassi male lambs M±SE.

Periods (monthly) Groups	Zero	1	2	3	4	5	6
G1	B7.02 ±	A8.57 ±	AB7.66 ±	AB7.34 ±	AB7.32 ±	AB7.80 ±	A8.04 ±
	0.54b	0.59b	0.61b	0.49b	0.37b	0.61b	0.54b
G2	B8.85 ±	A10.94 ±	A10.42 ±	B9.00 ±	B9.28 ±	B8.75 ±	A9.35 ±
	0.37b	0.21a	0.22a	0.27a	0.22a	0.49ab	0.19a
G3	A11.50 ± 0.37a	AB10.57 ± 0.33a	BC10.02 ± 0.37a	C9.06 ± 0.22a	C9.10 ± 0.33a	BC9.91 ± 0.35a	C9.84 ± 0.46a
G4	AB10.82 ±	A11.31 ±	ABC10.42	BC9.80 ±	C9.37 ±	BC9.97 ±	BC9.87 ±
	0.23a	0.25a	± 0.19a	0.18a	0.64a	0.38a	0.21a
LSD	1.2074						

Means with a different small letter in the same column significantly different (P<0.05)

Means with a different capital letter in the same row significantly different (P<0.05)

blood total protein (BTP) values in calves (Dobicki et al., 2005; Kuprechtova and Illek, 2006), or neonatal dairy calves (Lesmeister et al., 2004) or early lactating dairy goats (Stella et al., 2007). Abu El-Ella and Kommonna (2013) reported that supplementation of yeast culture decreased cholesterol concentration. Also Mousa et al. (2012) worked on sheep and reported that feeding diets treated with probiotic resulted in a decrease of cholesterol concentration. Then again, the useful impacts of dietary yeast addition on the levels of the various protozoa kinds in rumen encourage favorable outcomes on metabolic activities described by increments of BTP, BUN and calcium focuses and diminishing of BTG levels in rams (Galip, 2006).

MATERIALS AND METHODS

ANIMALS AND EXPERIMENT DESIGN

This experiment was performed in the animal farm of Veterinary Medicine College of Kufa University from 25 March up to 20 September 2017. Twenty four Awassi male lambs at age of 2-3 months were used with a mean body weight was 14.25 kg. The animals were randomly divided into four groups (6 each) equally (body weight was considered) and treated as following:

Group one (Control) was fed on concentrate diet at the rate of 2% body weight with wheat straw daily, Group two (SC) was fed on the same diet and was given 5g/head of S. cerevisiae daily, mixed withconcentrated diet, Group three (Pro.) was fed on the same diet and was given one sachet (1g)/head /weekly of probiotic (**Biolact**[®]) mixed with concentrated diet, Group four (SC+Pro.) was fed on the same diet and the concentrated diet was mixed S. cerevisiae as mentioned in group two and probiotic (**Biolact**[®]) as mentioned in groupthree. Water was freely offered for all groups of animals.

BIOCHEMICAL AND BLOOD ANALYSIS

The following traits estimated by the photometric method: Hemoglobin concentration (Hb) was measured according to Coles, (1986), blood Total Protein (TP) evaluated according to Henry et al. (1974), Total Cholesterol (TCH) determination according to Tietz (1999), Triglycerides (TG) estimated according to Fossati and Prencipe, (1982).

STATISTICAL ANALYSIS

Data was performed using the Statistical Analysis System - version 9.1. One-way, Two ANOVA and Least significant differences post hoc test were performed to assess significant differences among means. P < 0.05 was considered statistically significant (SAS, 2010).

RESULTS AND DISCUSSION

HEMOGLOBIN (HB) G/DL

Results revealed that all treatment groups (G2, G3 and G4) showed significantly (P<0.05) higher the control group in **Hb** values in all experiment months (Table 1).

The significantly (P<0.05) higher in Hb values in treatment groups (G2, G3 and G4) than control group during experiment periods and mathematical increasing in Hb values in G4 compared with G2 and G3, it could be attributed to the effect of yeast and bacterial probiotic that resulted in better iron salt absorption from the small intestine that iron salt considered the main source of hemoglobin synthesis, also probiotics were found to produce vitamins B, affecting positively blood - cell forming processes that confirmed by (Kander, 2004) and in agreement with Sarwar et al. (2011) who found that Hb, PCV and RBC's count were higher (P<0.05) in growing Kajli lambs fed diets containing probiotics than those without it.

TOTAL PROTEIN (TP) G/DL

The differences among groups within each month in TP, G4 recorded significantly (P<0.05) higher in the 4th and 6th months (6.50 ± 0.24 and 6.92 ± 0.15) respectively than other groups Table (2).

OPEN OACCESS

Table 2: Effect of dietary *Saccharomyces cerevisiae* and/or Probiotic supplementation in **TP** of local Awassi male lambs M±SE.

Periods (monthly) Groups	Zero	1	2	3	4	5	6
G1	AB6.18±0.19a	B5.70±0.12a	AB6.28±0.16a	AB5.84±0.13a	B5.74±0.15b	A5.86±0.11a	A6.37±0.12ab
G2	AB5.90±0.26a	B5.49±0.26a	AB5.90±0.25a	AB5.89±0.16a	B5.50±0.15b	A6.25±0.33a	A6.21±0.01b
G3	AB5.92±0.22a	AB5.79±0.38a	A6.17±0.37a	AB5.77±0.07a	B5.45±0.09b	AB5.80±0.10a	A6.53±0.14ab
G4	C5.75±0.15a	B6.01±0.32a	A6.35±0.19a	A6.35±0.12a	A6.50±0.24a	AB6.27±0.18a	A6.92±0.15a
T CD	0.50/7						

LSD 0.5967

Means with a different small letter in the same column significantly different (P<0.05)

Means with a different capital letter in the same row significantly different (P<0.05)

Table 3: Effect of dietary Saccharomyces cerevisiae and/or Probiotic supplementation in blood total **Cholesterol** of local Awassi male lambs M±SE.

Periods (monthly) Groups	Zero	1	2	3	4	5	6
G1	A46.22±	A45.12±	A46.53±	AB44.72±	B41.65±	C36.16±	C34.55±
	1.27a	0.51ab	1.47a	0.91a	0.61a	0.78a	0.68a
G2	A43.83±	A41.57±	A43.52±	A43.44±	B35.11±	B34.05±	B32.25±
	2.03a	1.00c	1.21ab	0.99ab	1.29b	0.99a	0.91ab
G3	AB44.81±	A47.27±	AB44.03±	B43.39±	D36.09±	D34.48±	D33.00±
	1.40a	1.47a	0.71ab	1.14ab	0.59b	0.71a	0.81ab
G4	A44.75±	AB42.15±	AB42.35±	B41.47±	C35.14±	CD33.24±	D30.81±
	1.53a	1.86bc	0.41b	0.39b	1.62b	0.84a	0.32b
LSD	3.2509						

Means with a different small letter in the same column significantly different (P<0.05)

Means with a different capital letter in the same row significantly different (P<0.05)

The significant (P<0.05) increasing of TP values in group that be supplemented by yeast and bacterial probiotic (G4) than other groups during the experiment periodsit may be related to the synergism effect of probiotics (yeast + bacteria) supplementation on protein digestibility through the enzymatic effect of protease and alteration amino acid profile of digestion due to increasing microbial protein synthesis leading to increase in protein formation in the cells of liver and consequently increasing in the blood TP (Abdel-Khalek et al., 2000).

TOTAL CHOLESTEROL (MG/DL)

The results showed significant (P<0.05) differences among groups at different periods Table 3. The G1 recorded significantly (P<0.05) increasing in Cholesterol values compared with other groups for all experiment months which showed (G2,G3 and G4) significantly decreasing in cholesterol values during all experiment months than control group.

The significant (P<0.05) reduction in the total cholesterol level in G2,G3 and G4 as a result of SC and/or probiotic supplementation compared with control group of each experiment period, which it may be considered as an indication of the improvement in the health status of animal be-

December 2018 | Volume 6 | Issue 12 | Page 539

cause of yeast and probiotic addition leading to more using of cholesterol molecule for body growth and development which confirmed by Abu El-Ella & Kommonna, (2013) who reported that supplementation of probiotic decreased cholesterol concentration and in agreement with El-Ashry et al. (2004) and Talha et al. (2009) worked on buffalo claves and Abdel Rahman et al. (2012) and Mousa et al., (2012) worked on sheep and reported that feeding diets treated with probiotic resulted in a decrease of cholesterol concentration and improve animal health. Or it may be attributed to, the enzymatic de-conjugation of bile acids (bile acids consist of cholesterol) by probiotics hydrolase (Begley et al., 2006) and once de-conjugated, bile acids became less soluble and less absorbed by the intestines, leading to their elimination in the feces.

TRIGLYCERIDES (TG) MG/DL

Results demonstrated that G2 alternated G4 the significant decreasing than other groups in blood **TG** values which be evident during 5th and 6th months (22.89 \pm 1.28 and 32.69 \pm 1.40) respectively of experiment Table (4).

The significant (P<0.05) reduction in the TG values in G2 and G4 than other groups at 5^{th} and 6^{th} months respectively of experiment, it could be due to, the effect of yeast and

OPEN OACCESS

Table 4: Effect of dietary *Saccharomyces cerevisiae* and/or Probiotic supplementation in blood **TG** of local Awassi male lambs M±SE.

Periods (monthly) Groups	Zero	1	2	3	4	5	6
G1	C18.98 ± 1.45a	C19.95 ± 0.51a	BC22.36 ± 1.03a	B24.58 ± 1.63a	B26.03 ± 1.31a	B24.75 ± 0.65ab	A36.14 ± 1.18ab
G2	B20.94 ± 1.05a	B20.16 ± 0.43a	B22.57 ± 1.70a	B23.40 ± 1.75a	B22.88 ± 0.57a	B22.89 ± 1.28b	A37.45 ± 1.12a
G3	D20.54 ± 0.40a	D20.85 ± 0.37a	CD22.86 ± 1.62a	B26.50 ± 1.42a	BC25.24 ± 2.07a	BC25.22 ± 0.85ab	A35.89 ± 1.49ab
G4	CD20.70 ± 0.52a	D19.92 ± 0.31a	CD23.92 ± 1.76a	BC25.17 ± 1.61a	BC25.37 ± 1.49a	B26.81 ± 1.93a	A32.69 ± 1.40b
TCD	2 (12)						

LSD 3.6126

Means with a different small letter in the same column significantly different (P<0.05)

Means with a different capital letter in the same row significantly different (P<0.05)

probiotic supplementation leading to decrease the TG values in blood serum of supplemented animals as a result of positive changes in rumen fermentation and increase in bacterial and protozoal numbers and some changes in short-chain fatty acids concentration in the rumen that all this changes leading to reduction in TG formation in the cells of liver and consequently decreasing in the blood TG that consistent with Masek et al. (2008) and in agreement with Chiofalo et al. (2004) who reported a significant reduced in the concentration of non-esterified fatty acids (NEFA), triglycerides and increase of high density lipoproteins (HDL) in growing kids supplemented with probiotics.

ACKNOWLEDGEMENTS

Authors would like to thank the staff of the farm of faculty of Veterinary Medicine and the Public Health lab for their contribution.

CONFLICT OF INTEREST

Authors declare that there was no conflict of interest.

AUTHORS CONTRIBUTION

Dr Hayder and Dr Drgham did the experimental design. Dr Hayder did the experimental work and lab work. Dr Hayder and Dr Drgham wrote the manuscript.

REFERENCES

•Abdel Rahman H, Baraghit GA, Abu El-Ella AA, Omar SS, Abo Ammo FF, Kommona OF (2012). Physiological responses of sheep to diet supplementation with yeast culture. Egypt. J. Sheep Goat Sci. 7: 27-38.

- Abdel-Khalek AE, Mehrez AF, Omar EA (2000). Effect of yeast culture (Lacto-Sacc) on rumen activity, blood constituents and growth of suckling Friesian calves. Proceedings of the Conference of Animal Production the 21st Century, held on 18-20 April 2000 at Sakha: 201-210.
- •Abu El-Ella AA, Kommonna OF (2013). Reproductive performance and blood constituents of Damascus goats as affected by yeast culture supplementation. Egypt. J. Sheep Goat Sci. 8: 171-187.
- Begley M, Hill C, Gahan CGM (2006). Bile Salt Hydrolase Activity in Probiotics. Appl. Environ. Microbiol. 72: 1729-1738. https://doi.org/10.1128/AEM.72.3.1729-1738.2006
- Chaucheyras-Durand F, Walker ND, Bach A (2008). Effects of active dry yeasts on the rumen microbial ecosystem: Past, present and future. Anim. Feed Sci. Technol. 145(1-4):5-26 https://doi.org/10.1016/j.anifeedsci.2007.04.019.
- Chiofalo V, Liotta L, Chiofalo B (2004). Effects of the administration of Lactobacilli on body growth and on the metabolic profile in growing Maltese goat kids. Reprod. Nutr. Dev. 44: 449-457. https://doi.org/10.1051/rnd:2004051
- •Coles EH (1986). Veterinary Clinical Pathology. 4thed. W.B. Saunders Company, Philadelphia. 486p.
- Dobicki A, J Preś, W Luzak, A Szyrner (2005).Influence of dried brewery's yeast on body weight gains, physiological and biological indicators of blood and development of rumen microorganisms in calves. Medycyna Wet. 61: 946-949.
- El-AshryMA, El-Sayed HM, El-Koussy HM, Khorshed MM, Saleh HM, Ammar AK (2004). Effect of Lacto-Sacc on feed efficiency, some blood constituents and reproductive performance of growing Egyptian buffalo heifers. Egypt. J. Nutr. Feeds. 7: 97 – 108.
- Fossati P, Prencipe L (1982). Serum triglycerides determined colon-metrically with an enzyme that produces hydrogen peroxide. Clin. Chem. 28: 2077-2080.
- Galip N (2006). Effect of supplemental yeast culture on ruminal protozoa and blood parameters in rams. Rev. Méd. Vét. 157: 519- 524.
- Henry RJ, Carnnon DC, Winkelman JW (1974). Clinical chemistry, Principle and Techniques 2nd (ed). Harper and Row. (Cited by Al-Rashedy; 2001)
- Kander M (2004). Effect of Bifidobacterium sp. On the health state of piglets, determined on the basis of hematological and biochemical indices. Electronic J. Polish Agric. Uni. Vet.

Advances in Animal and Veterinary Sciences

OPEN OACCESS

Med. available on pl/volume7 /issue2 /veterinary/art-07. html access on 12 October, 2014.

- Kuprechtova D, J Illek (2006). Effect of mannanoligos accharides supplemented via milk replacer on the immune status and growth of calves. Slov. Vet. Zbr. 43: 311-313.
- Lesmeister KE, AJ Heinrichs, MT Gabler (2004).Effect of supplemental yeast (Saccharomyces cerevisiae) culture on rumen development, growth characteristics, and blood parameters in neonatal dairy calves. J. Dairy Sci. 87: 1832– 1839. https://doi.org/10.3168/jds.S0022-0302(04)73340-8
- Masek T, Mikulec Ž, Valpotic H, Antunac N, Mikulec N, Stojevic Z, Ilipovic N, Pahovic S (2008). Influence of live yeast culture (Saccharomyces cerevisiae) on milk production and composition, and blood biochemistry of grazing dairy ewes during the milking period. Acta Vet. Brno. 77: 547-554. https://doi.org/10.2754/avb200877040547
- Mousa KhM, El-Malky OM, Komonna OF, Rashwan SE (2012). Effect of some yeast and minerals on the productive and reproductive performance in ruminants. J. Amer. Sci. 8: 291-303.
- Muniz JA, TV Savian, JD Scalon (2008). Parameters estimation in the model for In situ degradability of Mertens and Loften. Ciênc. Agrotec. Lavras. 32(5): 1622-1628, set./out.
- •Sarwar M, Shahzad MA, Farooq MK, Nisa M (2011).

Performance of growing lambs receiving altered plant protein sources with or without probiotics. International Conference Asia Agric. Anim. 13:139-144.

- SAS (2010). SAS/STAT. Users Guide for Personal Computer. Release 9.13. SAS Institute, Inc., Cary, N.C., USA.
- Stella AV, Paratte R, Valnegri L, Cigalino G, Soncini G, Chevaux E, Dell'Otro V, Savoini G (2007). Effect of ad-ministration of live Saccharomyces cerevisiae on milk pro-duction, milk composition, blood metabolites and faecal flora in early lactating dairy goats. Small Rumin. Res. 67: 7-13. https:// doi.org/10.1016/j.smallrumres.2005.08.024
- Talha MH, Moawd RI, Abu El-Ella AA, Zaza GH (2009). Effect of some feed additive on rearing calves from birth to weaning in productive performance and some blood parameters. J. Agric. Sci. Mansoura Uni. 34: 2611-2631.
- Tietz Textbook of Clinical Chemistry, 3rd edn. Ed by C ABurtis, ER Ashwood (1999). Philadelphia: W B Saunders Company, Pp1917,ISBN0721656102.
- Tripathi MK, Karim SA (2011). Effect of yeast cultures supplementation on live weight change, rumen fermentation, ciliate protozoa population, microbial hydrolytic enzymes status and slaughtering performance of growing lamb. Livest. Sci. 135: 17-25. https://doi.org/10.1016/j.livsci.2010.06.007

