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HETEROLOGOUS IMMUNITY 

A very important and distinguishable feature of 
adaptive immunity is the generation of memo-

ry responses (Farber, 2005). Immune responses gen-
erated against a prior infectious agent can alter the 
immune response and the infection pattern of sub-
sequent, unrelated pathogens by a process common-
ly defined as heterologous immunity (Martin, 2014; 
Sharma and Thomas, 2014). The outcome of heterol-
ogous infection can vary from good that is providing 
immunity to bad meaning resulting in a net immu-
nopathology. The sequence of infections in heterol-
ogous infections may vary for example the infections 
can occur concurrently or sequentially. In a setting of 
infections with different strains of a similar pathogen 

or distinct pathogens are often classified as “coinfec-
tions” or super infections (Selin et al., 2011; Sharma 
and Thomas, 2014).

CD4T CELLS AS MEDIATORS OF 
HETEROLOGOUS IMMUNITY

The CD4 T cell plays a plays a very prominent role in 
providing protection against viral infections and are 
also involved in the development of memory B cells 
and CD8 T cells (Crotty and Ahmed, 2004; Koni-
shi, 2013; Sun et al., 2014; Zinkernagel, 2002). CD8 
T cells require CD4T cell help and this is important 
for primary and/or memory responses to some bac-
terial and viral infections (Bevan, 2004; Slifka, 2004; 
Wodarz, 2003). When we talk in context of heterol-
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ogous immunity, CD4 T cells can play a protective 
role or it can worsen the course of infection result-
ing in immunopathology (Damjanovic et al., 2012). 
For instance the adoptive transfer of CD8 and CD4 
subsets from LCMV immune mice into naive mice 
resulted in heterologous immunity upon subsequent 
infections with Pichinde virus or Vaccinia virus (Se-
lin et al., 1998). But we still lack the literature on the 
role of CD4T cells especially in the settings of various 
types of heterologous infections.

CD4T cells have been shown to protect against het-
erologous infections in a bystander manner. For ex-
ample a study with BCG strain of Mycobacterium 
bovis (a vaccine against tuberculosis) suggested that 
immunization of mice against the BCG strain of My-
cobacterium bovis also protected the animals against 
challenge with Vaccinia virus (VV), belonging to 
family Poxviridae. CD4T cells mediated this protec-
tion through production of IFNγ.

When an exacerbated immune response is generated, 
the immune system has developed several mechanisms 
to regulate these excessive immune responses that 
may cause pathology and autoimmune disease. These 
regulative mechanisms  include existence of regula-
tory T cells (Belkaid et al., 2002; Suvas et al., 2003), 
certain inhibitory interactions such as Tim3/Galectin 
9 inhibitory interaction (Belkaid et al., 2002; Kuchroo 
et al., 2006; Kuchroo et al., 2008; Sharma et al., 2011; 
Su et al., 2011; Zhu et al., 2005), PD1-PDL1 axis 
(Rouse and Sehrawat, 2010), CTLA-4 and CD80/86 
(Rouse and Sehrawat, 2010) interactions. 

REGULATORY  T CELLS 

Tregs are an important subset of CD4 T cells (La 
Cava et al., 2006). The Tregs that develop in the thy-
mus are known as naturally occurring Treg cells and 
the adaptive Tregs that are induced by various stimu-
lations such as an antigen (Benoist and Mathis, 2012; 
French and Kinter, 2012; Robertson and Hasenk-
rug, 2006; Rouse et al., 2006). Naturally occurring 
CD4+CD25+ regulatory T cells have been shown 
to constitute 5–15% of peripheral CD4+ T in both 
mice and humans (Sakaguchi, 2003). A large body of 
literature suggests that the severity of many immune 
inflammatory reactions are regulated or controlled by 
Tregs (Suvas and Rouse, 2006). The Tregs acts to limit 
or suppress the immune response generated against 

a pathogen (Suvas et al., 2004). We need this Treg 
mediated suppression to prevent the collateral tissue 
damage that might occur due to the excessive immune 
response generated against the pathogen (Sehrawat et 
al., 2008). Thus Tregs greatly influence the magnitude 
of a T cell mediated immune response to an acute vi-
ral infection (Sharma et al., 2014; Suvas et al., 2003) 
particularly those that express FoxP3.

Infections or challenge with the pathogens may signal 
Treg expansion and this Treg expansion could further 
influence the magnitude and also the pattern of the 
immune response. Thus in such cases immune re-
sponses against a pathogen and responses to vaccines 
are elevated if the Treg response is modulated (Rouse 
and Suvas, 2004; Sehrawat et al., 2008; Suvas et al., 
2004). 

The magnitude of the Treg response in different in-
dividuals may also explain in some circumstances the 
differential outcome of infection with chronic infec-
tion like hepatitis (Rouse and Sehrawat, 2010). In 
case of persistent infections where there is huge tissue 
damage, the Treg response can improve the outcome 
and diminish the pathology (Sehrawat and Rouse, 
2011). In many studies the Treg response to patho-
gens is assumed to consist mainly or predominately of 
antigen specific Tregs (Bedoya et al., 2013), but there 
are some examples to cite where the involvement of 
Tregs is not antigen speific (Maizels et al., 2004; Tel-
ford et al., 1998; Bedoya et al., 2013) and a recent 
study has shown a possible mechanism of generation 
of non-antigen specific Tregs (Sharma et al., 2014).

REGULATORY T CELLS IN 
HETEROLOGOUS INFECTIONS

Here we discuss the Treg cells expanded during past 
infections that can potentially modulate the charac-
teristics of effector T-cell responses and immunopa-
thology during subsequent heterologous infections. 
The influence of natural Treg cells may favourably af-
fect the outcome or can be harmful to the host (Page 
et al., 2006). However, the outcome of an infection 
(viral) may be affected by several other factors such as 
the stage of infection (Figure 1A, 1B and 1C), dose of 
the pathogen and genotype and immunological status 
of the host and also the presence of various other dis-
eases and infections (Belkaid and Rouse, 2005).
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Figure 1: Outcome of infection following heterologous viral infections is dependent on the stages of ongoing 
immune response to a previously encountered pathogen: (A) If the infections with the viruses (here for example 
2 virus system) occurs at the same time, the outcome could be enhanced immunopathology possibly due to 
the immune responses to both the viruses reaching the peak at the same time. (B) Prior infection can result 
in activation of APC and the new incoming infection at this stage encounters mature APC, efficient antigen 
presentation and faster disease progression. Also the new incoming pathogen creates a strong antiviral state 
that might result in reduced viral loads of first pathogen. (C) Upon activation APC’s secrete cytokines that 
results in T helper subset differentiation and the incoming pathogen at this stage encounters a polarized 
immune response. Encounter with Th1 type of immune response can provide bystander protection or enhanced 
imunopathology whereas T regs (D) can result in suppression of immune responses to incoming pathogen, 
which may be protective or pathogenic. The outcome of heterologous viral infections however, depends on the 
type and sequence of viruses.

Although the role of Tregs has not been extensive-
ly evaluated in co-infection models, however several 
studies in hetrologous infections suggests that Tregs 
induced during one infection (Figure 1D) can lead to 
suppression of bystander responses (Page et al., 2006). 
The First evidence that depleting Tregs prior to viral 
infection enhances CD8T cell responses to subse-
quent viral infection came from the studies by Suvas 
et al. (2003). Their study demonstrated that depletion 
of Tregs resulted in increased activation and prolifera-

tion of Herpes Simplex virus (HSV-1) specific CD8T 
cells and this effect was observed both in the acute 
and memory phases of the immune response. These 
findings were very important in terms of explaining 
the phenomenon of diminished immunity during a 
viral infection or other infectious agents and suggest-
ed the fact that vaccine responses can be improved by 
Treg manipulation. This study also suggested how vi-
ral infection might temporarily diminish immunity to 
other infectious agents and thus their application to 
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vaccines. Thus, controlling suppressor effects of regu-
latory T cells at the time of vaccination could result in 
more effective immunity.

Later on it was shown that that Treg depletion via 
treatment with anti-CD25 mAb (PC61) significantly 
enhances CD8T cell responses to influenza A virus, 
vaccinia virus, and SV40-transformed cells induced 
by either direct priming or cross-priming (Haeryfar 
et al., 2005). Importantly treatment with PC61 did 
not enhance CD8T cell responses in the absence of 
CD4T cells suggesting that PC61 acts on a subset 
of CD4 T cells, and not on other cells that express 
CD25. Tregs thus selectively suppress the responses 
to immuno-dominant CD8 T cell epitopes. 

Treg cells generated during an acute infection can 
influence the magnitude and quality of effector 
T-cell responses and their ability to contribute to 
lung pathology during a subsequent heterologous 
virus infection as is shown for Influenza A virus in-
fection (Brincks et al., 2013). Accordingly, following 
challenge with heterosubtypic  IAV infection, anti-
gen-specific IAV-induced Treg cells have been re-
ported to attenuate subsequent T cell responses and 
decrease pathology during a secondary heterologous 
IAV challenge (Brincks et al., 2013).

The presence of Tregs has been convincingly shown to 
influence viral clearance and immunopathology in the 
setting of persistent viral infections both in human 
and animal models (Reuter et al., 2012; Tseng et al., 
2012). In line with this using a heterologous infection 
model of persistent and non-persistent viral infec-
tions, it was shown for the first time that virus-ex-
panded Treg cells could attenuate immune responses 
and influence induction of lung pathology during a 
subsequent unrelated non persistent virus infection 
(Kraft et al., 2013). 

Tregs are usually known to result in a diminished im-
munopathology as has been shown in autoimmune 
diseases such as inflammatory bowel or celiac disease 
(Chen et al., 2003), and in some viral infections, such 
as respiratory syncytial virus (RSV) (Fulton et al., 
2010; Ruckwardt et al., 2009)  and IAV (Bedoya et 
al., 2013; Brincks et al., 2013). And when these Tregs 
were depleted by PC61 treatment prior to acute viral 
infections such as corneal HSV-1, neonatal HSV-1, 
or i.n. RSV, this results in enhanced immunopathol-

ogy due to increased virus-specific T-cell responses 
(Fulton et al., 2010; Ruckwardt et al., 2009; Suvas et 
al., 2004). However in contrast to these above men-
tioned studies, in the heterologous infection model of 
LCMV and IAV infection, depletion of Treg cells in 
IAV-immune mice prior to LCMV infection resulted 
in decreased lung pathology, with no differences in 
viral titters and significantly decreased LCMV-spe-
cific CD8+ T-cell responses in the spleen but not the 
mLN. 

It was then suggested that this was due to the delay 
in effector T cells trafficking out of the lymph node in 
the absence of Treg cells in both the LCMV-infected 
Influenza A virus (IAV)-immune and the naive mice, 
which is consistent with previous reports demonstrat-
ing that Treg cells play a role in controlling egress of 
effector T cells from the lymph node (Lund et al., 
2008). The important point to note here is that deple-
tion of the IAV-expanded Treg cells during LCMV 
infection did not significantly enhance virus-specific 
T-cell responses (Haeryfar et al., 2005; Ruckwardt et 
al., 2009), which is in contrast to the findings with 
Treg depletion via PC61 treatment during acute RSV 
or IAV infection.

Another explanation for the significant reduction in 
the severity of lung pathology following depletion of 
Tregs appeared to be mediated by over-activation and 
subsequent partial exhaustion of the LCMV-specif-
ic CD8+ T-cell response in LCMV-infected, Treg 
cell-depleted, IAV-immune mice.

In a mouse model of respiratory viral infection it has 
been previously shown that influenza (flu)-immune 
compare to naïve mice infected with Lymphocyt-
ic choriomeningitis virus (LCMV) have enhanced 
viral load, severe lung pathology and an altered cy-
tokine profile. In a study it was found that more 
CD4+Foxp3+ regulatory T (Treg) cells were present 
in lungs of these flu-immune mice compared to naïve 
or LCMV-immune mice thus raising the possibility 
that modulation in the normal balance of Treg and ef-
fector T cell responses might be contributing to these 
altered responses in flu-immune mice infected with 
LCMV. FLu-immune mice had altered kinetics com-
pared to naïve mice infected with LCMV.

In this heterologous infection model of IAV and 
LCMV, Treg cells followed the same kinetics as 
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CD4+ and CD8+ T cells in the mLN of acutely 
LCMV-infected mice that peaked at day 3 and de-
clined at day 7, in flu-immune mice there was a per-
sistent Treg population at higher levels, until day 9 
after LCMV infection. The presence of increased Treg 
cells in flu-immune lungs and an altered Treg cell ki-
netics in subsequent heterologous LCMV respiratory 
infections results in increased viral load and enhanced 
pro-inflammatory cytokine and chemokine levels in 
the lungs  and subsequent immunopathology. 

Thus, in conclusion, an individual’s history of infec-
tion and specific sequence of infection can alter Treg 
cell populations, resulting in greatly altered disease 
outcome during subsequent new infections. For a bet-
ter understanding of the role of Tregs in co-infection 
systems, our limited literature warrants more detailed 
studies with various hetrologous infection models in 
future.
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